1887

How to do Linguistics with R

Data exploration and statistical analysis

image of How to do Linguistics with R

This book provides a linguist with a statistical toolkit for exploration and analysis of linguistic data. It employs R, a free software environment for statistical computing, which is increasingly popular among linguists. How to do Linguistics with R: Data exploration and statistical analysis is unique in its scope, as it covers a wide range of classical and cutting-edge statistical methods, including different flavours of regression analysis and ANOVA, random forests and conditional inference trees, as well as specific linguistic approaches, among which are Behavioural Profiles, Vector Space Models and various measures of association between words and constructions. The statistical topics are presented comprehensively, but without too much technical detail, and illustrated with linguistic case studies that answer non-trivial research questions. The book also demonstrates how to visualize linguistic data with the help of attractive informative graphs, including the popular ggplot2 system and Google visualization tools.

This book has a companion website: http://doi.org/10.1075/z.195.website

References

  1. Agresti, A
    (2002) Categorical Data Analysis (2nd ed.). Hoboken, NJ: Wiley. doi: 10.1002/0471249688
    https://doi.org/10.1002/0471249688 [Google Scholar]
  2. Allan, L.G
    (1980) A note on measurement of contingency between two binary variables in judgment tasks. Bulletin of the Psychonomic Society, 15, 147–149. doi: 10.3758/BF03334492
    https://doi.org/10.3758/BF03334492 [Google Scholar]
  3. Anishchanka, A
    (2013) Seeing it in color: A usage-based perspective on color naming in advertising. PhD diss., University of Leuven.
    [Google Scholar]
  4. Arppe, A. , Han, W. , & Newman, J
    (2013) Polytomous logistic regression with Shanghainese topic markers. Vignette, CRAN-R Project. cran.r-project.org/web/packages/polytomous/vignettes/shanghainese.pdf (last access13.12.2014).
  5. Atkins, B.T.S
    (1987) Semantic ID tags: Corpus evidence for dictionary senses. The uses of large text databases. Proceedings of the Third Annual Conference of the UW Centre for the New Oxford English Dictionary (pp.17–36). Waterloo, Canada.
    [Google Scholar]
  6. Baayen, R
    H (2008) Analyzing Linguistic Data. A Practical Introduction to Statistics Using R. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511801686
    https://doi.org/10.1017/CBO9780511801686 [Google Scholar]
  7. Balota, D.A. , Yap, M.J. , & Cortese, M.J ., et al.
    (2007) The English Lexicon Project. Behavior Research Methods, 39(3), 445–459. doi: 10.3758/BF03193014
    https://doi.org/10.3758/BF03193014 [Google Scholar]
  8. Barnbrook, G. , Mason, O. , & Krishnamurthy, R
    (2013) Collocation: Applications and Implications. Basingstoke, Hampshire: Palgrave Macmillan. doi: 10.1057/9781137297242
    https://doi.org/10.1057/9781137297242 [Google Scholar]
  9. Bates, E. , & Goodman, J.C
    (1997) On the inseparability of grammar and the lexicon: Evidence from acquisition, aphasia and real-time processing. Language and Cognitive Processes, 12(5/6), 507–586. doi: 10.1080/016909697386628
    https://doi.org/10.1080/016909697386628 [Google Scholar]
  10. Berlin, B. , & Kay, P
    (1969) Basic Color Terms: Their Universality and Evolution. Berkeley, CA: University of California Press.
    [Google Scholar]
  11. Biber, D
    (1988) Variation Across Speech and Writing. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511621024
    https://doi.org/10.1017/CBO9780511621024 [Google Scholar]
  12. Bloomfield, L
    (1935) Language. London: Allen & Unwin.
    [Google Scholar]
  13. Borg, I. , & Groenen, P
    (1997) Modern Multidimensional Scaling: Theory and Applications. New York: Springer. doi: 10.1007/978‑1‑4757‑2711‑1
    https://doi.org/10.1007/978-1-4757-2711-1 [Google Scholar]
  14. Boroditsky, L
    (2001) Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43, 1–22. doi: 10.1006/cogp.2001.0748
    https://doi.org/10.1006/cogp.2001.0748 [Google Scholar]
  15. Bowerman, M. , & Choi, S
    (2003) Space under construction: Language-specific spatial categorization in first language acquisition. In D. Gentner & S. Goldin-Meadow (Eds.), Language in Mind: Advances in the Study of Language and Thought (pp. 387–427). Cambridge, MA: MIT Press.
    [Google Scholar]
  16. Bresnan, J. , & Hay, J
    (2008) Gradient Grammar: An effect of animacy on the syntax of give in New Zealand and American English. Lingua, 118(2), 245–259. doi: 10.1016/j.lingua.2007.02.007
    https://doi.org/10.1016/j.lingua.2007.02.007 [Google Scholar]
  17. Brugman, C
    (1988 [1981]) The Story of Over: Polysemy, Semantics and the Structure of the Lexicon. New York: Garland.
    [Google Scholar]
  18. Bullinaria, J.A. , & Levy, J.P
    (2007) Extracting semantic representations from word co-occurrence statistics: A Computational Study. Behavior Research Methods, 39, 510–526. doi: 10.3758/BF03193020
    https://doi.org/10.3758/BF03193020 [Google Scholar]
  19. Bybee, J
    (2001) Phonology and language use. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511612886
    https://doi.org/10.1017/CBO9780511612886 [Google Scholar]
  20. Chambers, J
    (2008) Software for Data Analysis: Programming with R. New York: Springer. doi: 10.1007/978‑0‑387‑75936‑4
    https://doi.org/10.1007/978-0-387-75936-4 [Google Scholar]
  21. Chang, W
    (2012) R Graphics Cookbook. Sebastopol, CA: O’Reilly Media.
    [Google Scholar]
  22. Chomsky, N
    (1957) Syntactic Structures. The Hague: Mouton.
    [Google Scholar]
  23. Conover, W.J
    (1999) Practical Nonparametric Statistics (3rd ed.). New York: Wiley.
    [Google Scholar]
  24. Conover, W.J. , Johnson, M.E. , & Johnson, M.M
    (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics, 23, 351–361. doi: 10.1080/00401706.1981.10487680
    https://doi.org/10.1080/00401706.1981.10487680 [Google Scholar]
  25. Cox, T.F. , & Cox, M.A.A
    (2001) Multidimensional Scaling (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC Press.
    [Google Scholar]
  26. Crawley, M.J
    (2007) The R Book. Chichester: Wiley. doi: 10.1002/9780470515075
    https://doi.org/10.1002/9780470515075 [Google Scholar]
  27. Dąbrowska, E
    (2009) Words as constructions. In V. Evans & S. Pourcel (Eds.), New Directions in Cognitive Linguistics (pp. 201–223). Amsterdam: John Benjamins. doi: 10.1075/hcp.24.16dab
    https://doi.org/10.1075/hcp.24.16dab [Google Scholar]
  28. Davies, M
    (2008) The Corpus of Contemporary American English: 450 million words, 1990 – present. Available online atcorpus.byu.edu/coca/.
  29. (2011) N-grams and word frequency data from the Corpus of Historical American English (COHA). Available online atwww.ngrams.info.
  30. (2013) Corpus of Global Web-Based English: 1.9 billion words from speakers in 20 countries. Available online atcorpus2.byu.edu/glowbe/.
  31. de Leeuw, J
    (1977) Applications of convex analysis to multidimensional scaling. In J. Barra , F. Brodeau , G. Romier , & B.V. Cutsem (Eds.), Recent Developments in Statistics (pp. 133–145). Amsterdam: North Holland Publishing Company.
    [Google Scholar]
  32. Deerwester, S. , Dumais, S.T. , Furnas, G.W. , Landayer, T.K. , & Harshman, R
    (1990) Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41, 391–407. doi: 10.1002/(SICI)1097‑4571(199009)41:6<391::AID‑ASI1>3.0.CO;2‑9
    https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 [Google Scholar]
  33. Diessel, H
    (2007) Frequency effects in language acquisition, language use, and diachronic change. New Ideas in Psychology, 25, 108–127. doi: 10.1016/j.newideapsych.2007.02.002
    https://doi.org/10.1016/j.newideapsych.2007.02.002 [Google Scholar]
  34. Divjak, D
    (2003) On trying in Russian: A tentative network model for near(er) synonyms. In Belgian Contributions to the 13th International Congress of Slavicists , Ljubljana, 15-21 August 2003. Special issue of Slavica Gandensia . (pp. 25–58).
    [Google Scholar]
  35. Divjak, D. , & Gries, S. Th
    (2006) Ways of trying in Russian: Clustering behavioral profiles. Corpus Linguistics and Linguistic Theory, 2, 23–60. doi: 10.1515/CLLT.2006.002
    https://doi.org/10.1515/CLLT.2006.002 [Google Scholar]
  36. (2009) Corpus-based cognitive semantics: A contrastive study of phasal verbs in English and Russian. In K. Dziwirek & B. Lewandowska-Tomaszczyk (Eds.), Studies in Cognitive Corpus Linguistics (pp. 273–296). Frankfurt am Main: Peter Lang.
    [Google Scholar]
  37. Dunning, T
    (1993) Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19(1), 61–74.
    [Google Scholar]
  38. Ellis, N
    (2006) Language acquisition as rational contingency learning. Applied Linguistics, 27(1), 1–24. doi: 10.1093/applin/ami038
    https://doi.org/10.1093/applin/ami038 [Google Scholar]
  39. Ellis, N. , & Ferreira-Junior, F
    G (2009) Constructions and their acquisition: Islands and the distinctiveness of their occupancy. Annual Review of Cognitive Linguistics, 7, 188–221. doi: 10.1075/arcl.7.08ell
    https://doi.org/10.1075/arcl.7.08ell [Google Scholar]
  40. Ember, C.R. , & Ember, M
    (2007) Climate, econiche, and sexuality: Influences on sonority inlanguage. American Anthropologist, 109(1), 180–185. doi: 10.1525/aa.2007.109.1.180
    https://doi.org/10.1525/aa.2007.109.1.180 [Google Scholar]
  41. Everett, D
    (2005) Cultural Constraints on Grammar and Cognition in Pirahã: Another Look at the Design Features of Human Language. Current Anthropology, 46, 621–646. doi: 10.1086/431525
    https://doi.org/10.1086/431525 [Google Scholar]
  42. Evert, S
    (2004) The Statistics of Word Cooccurrences: Word Pairs and Collocations. IMS, University of Stuttgart.
    [Google Scholar]
  43. Everitt, B. , & Hothorn, T
    (2011) An Introduction to Applied Multivariate Analysis with R. New York: Springer. doi: 10.1007/978‑1‑4419‑9650‑3
    https://doi.org/10.1007/978-1-4419-9650-3 [Google Scholar]
  44. Everitt, B.S. , Landau, S. , Leese, M. , & Stahl, D
    (2011) Cluster Analysis (5th ed.). Chichester: Wiley. doi: 10.1002/9780470977811
    https://doi.org/10.1002/9780470977811 [Google Scholar]
  45. Faraway, J.J
    (2009) Linear Models with R. Boca Raton, FL: Chapman and Hall/CRC Press.
    [Google Scholar]
  46. Fox, J
    (2008) Applied Regression Analysis and Generalized Linear Models (2nd ed.). Thousand Oaks, CA: Sage Publications.
    [Google Scholar]
  47. Field, A. , Miles, J. , & Field, Z
    (2012) Discovering Statistics Using R. Los Angeles: Sage.
    [Google Scholar]
  48. Firth, J.R
    (1957) A synopsis of linguistic theory 1930–1955. In J.R. Firth (Ed.), Studies in Linguistic Analysis (pp. 1–32). Oxford: Blackwell.
    [Google Scholar]
  49. Friendly, M
    (1996) Paivio, et al. Word List Generator, Online application. RetrievedApril28 2013, fromwww.datavis.ca/online/paivio/
  50. Geeraerts, D
    (1999) Idealist and empiricist tendencies in cognitive linguistics. In T. Janssen & G. Redeker (Eds.), Cognitive Linguistics: Foundations, Scope, and Methodology (pp. 163–194). Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110803464.163
    https://doi.org/10.1515/9783110803464.163 [Google Scholar]
  51. (2010) Theories of Lexical Semantics. Oxford: Oxford University Press.
    [Google Scholar]
  52. Gilquin, G
    (2006) The place of prototypicality in corpus linguistics: Causation in the hot seat. In S. Th. Gries & A. Stefanowitsch (Eds.), Corpora in Cognitive Linguistics: Corpus-Based Approaches to Syntax and Lexis (pp. 159–191). Berlin/New York: Mouton de Gruyter.
    [Google Scholar]
  53. (2010) Corpus, Cognition and Causative Constructions. Amsterdam: John Benjamins. doi: 10.1075/scl.39
    https://doi.org/10.1075/scl.39 [Google Scholar]
  54. Gipper, H
    (1959) Sessel oder Stuhl? Ein Beitrag zur Bestimmung von Wortinhalten im Bereich der Sachkultur. In H. Gipper (Ed.), Sprache – Schlüssel zur Welt: Festschrift für Leo Weisgerber (pp. 271–92). Düsseldorf: Schwann.
    [Google Scholar]
  55. Goldberg, A.E. , Casenhiser, D. , & Sethuraman, N
    (2004) Learning argument structure generalizations. Cognitive Linguistics, 14(3), 289–316.
    [Google Scholar]
  56. Gower, J.C
    (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857–874. doi: 10.2307/2528823
    https://doi.org/10.2307/2528823 [Google Scholar]
  57. Greenacre, M
    (2007) Correspondence Analysis in Practice (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC Press. doi: 10.1201/9781420011234
    https://doi.org/10.1201/9781420011234 [Google Scholar]
  58. Gries, S. Th
    (2004) Coll.analysis 3. A program for R for Windows 2.x.
  59. (2006) Corpus-based methods and Cognitive Semantics: The many senses of to run . In S. Th. Gries & A. Stefanowitsch (Eds.), Corpora in Cognitive Linguistics. Corpus-based Approaches to Syntax and Lexis (pp. 57–99). Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110197709
    https://doi.org/10.1515/9783110197709 [Google Scholar]
  60. (2008) Dispersions and adjusted frequencies in corpora. International Journal of Corpus Linguistics, 13(4), 403–437. doi: 10.1075/ijcl.13.4.02gri
    https://doi.org/10.1075/ijcl.13.4.02gri [Google Scholar]
  61. (2009) Quantitative Corpus Linguistics with R: A Practical Introduction. New York/London: Routledge. doi: 10.1515/9783110216042
    https://doi.org/10.1515/9783110216042 [Google Scholar]
  62. (2012) Behavioral Profiles: A fine-grained and quantitative approach in corpus-based lexical semantics. In G. Jarema , G. Libben , & C. Westbury (Eds.), Methodological and Analytic Frontiers in Lexical Research (pp. 57–80). Amsterdam: John Benjamins. doi: 10.1075/bct.47.04gri
    https://doi.org/10.1075/bct.47.04gri [Google Scholar]
  63. (2013) Statistics for Linguistics with R. Berlin/New York: De Gruyter Mouton. doi: 10.1515/9783110307474
    https://doi.org/10.1515/9783110307474 [Google Scholar]
  64. Gries, S. Th. , Hampe, B. , & Schönefeld, D
    (2005) Converging evidence: Bringing together experimental and corpus data on the association of verbs and constructions. Cognitive Linguistics, 16(4), 635–676. doi: 10.1515/cogl.2005.16.4.635
    https://doi.org/10.1515/cogl.2005.16.4.635 [Google Scholar]
  65. Gries, S. Th. , & Stefanowitsch, A
    (2004) Extending collostructional analysis: A corpus-based perspective on ‘alternations’. International Journal of Corpus Linguistics, 9(1), 97–129. doi: 10.1075/ijcl.9.1.06gri
    https://doi.org/10.1075/ijcl.9.1.06gri [Google Scholar]
  66. Hanks, P
    (1996) Contextual dependency and lexical sets. International Journal of Corpus Linguistics, 1(1), 75–98. doi: 10.1075/ijcl.1.1.06han
    https://doi.org/10.1075/ijcl.1.1.06han [Google Scholar]
  67. Harrell, F.E
    (2001) Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer.
    [Google Scholar]
  68. Harris, Z
    (1954) Distributional structure. Word, 10(2/3), 146–162. doi: 10.1080/00437956.1954.11659520
    https://doi.org/10.1080/00437956.1954.11659520 [Google Scholar]
  69. Hilpert, M
    (2011) Dynamic visualizations of language change: Motion charts on the basis of bivariate and multivariate data from diachronic corpora. International Journal of Corpus Linguistics, 16(4), 435–461. doi: 10.1075/ijcl.16.4.01hil
    https://doi.org/10.1075/ijcl.16.4.01hil [Google Scholar]
  70. (2013) Constructional Change in English: Developments in Allomorphy, Word Formation, and Syntax. Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139004206
    https://doi.org/10.1017/CBO9781139004206 [Google Scholar]
  71. Hosmer, D.W. , & Lemeshow, S
    (2000) Applied Logistic Regression. New York: Wiley. doi: 10.1002/0471722146
    https://doi.org/10.1002/0471722146 [Google Scholar]
  72. Hothorn, T. , Hornik, K. , & Zeileis, A
    (2006) Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651–674. doi: 10.1198/106186006X133933
    https://doi.org/10.1198/106186006X133933 [Google Scholar]
  73. Huck, S.W
    (2009) Statistical Misconceptions. New York/London: Routledge.
    [Google Scholar]
  74. Husson, F. , Lê, S. , & Pagès, J
    (2010) Exploratory Multivariate Analysis by Example Using R. Boca Raton, FL: Chapman and Hall/CRC Press. doi: 10.1201/b10345
    https://doi.org/10.1201/b10345 [Google Scholar]
  75. Itkonen, E
    (1980) Qualitative vs. quantitative analysis in linguistics. In T.A. Perry (Ed.), Evidence and Argumentation in Linguistics (pp.334–366). Berlin: Mouton.
    [Google Scholar]
  76. Johnson, K
    (2008) Quantiative Methods in Linguistics. Malden, MA: Blackwell Publishing.
    [Google Scholar]
  77. Kaufman, L. , & Rousseeuw, P.J
    (1990) Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley-Interscience. doi: 10.1002/9780470316801
    https://doi.org/10.1002/9780470316801 [Google Scholar]
  78. Kay, P. , & McDaniel, C.K
    (1978) The linguistic significance of the meanings of Basic Color Terms. Language, 54(3), 610–646. doi: 10.1353/lan.1978.0035
    https://doi.org/10.1353/lan.1978.0035 [Google Scholar]
  79. Kepser, S. , & Reis, M
    (2005) Evidence in Linguistics. In S. Kepser & M. Reis (Eds.), Linguistic Evidence: Empirical, Theoretical and Computational Perspectives (pp. 1–6). Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110197549.1
    https://doi.org/10.1515/9783110197549.1 [Google Scholar]
  80. Keuleers, E. , Lacey, P. , Rastle, K. , & Brysbaert, M
    (2012) The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287–304. doi: 10.3758/s13428‑011‑0118‑4
    https://doi.org/10.3758/s13428-011-0118-4 [Google Scholar]
  81. Kortmann, B. , & Lunkenheimer, K
    (Eds.) (2013) The Electronic World Atlas of Varieties of English. Leipzig: Max Planck Institute for Evolutionary Anthropology. Retrieved fromewave-atlas.org
    [Google Scholar]
  82. Kruskal, J.B
    (1964) Multidimensional Scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrica, 29(1), 1–27. doi: 10.1007/BF02289565
    https://doi.org/10.1007/BF02289565 [Google Scholar]
  83. Kučera, H. , & Francis, W.N
    (1967) Computational Analysis of Present-day American English. Providence: Brown University Press.
    [Google Scholar]
  84. Lakoff, G. , & Johnson, M
    (1980) Metaphors We Live By. Chicago: University of Chicago Press.
    [Google Scholar]
  85. Landauer, T.K. , & Dumais, S.T
    (1997) A solution to Plato’s problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240. doi: 10.1037/0033‑295X.104.2.211
    https://doi.org/10.1037/0033-295X.104.2.211 [Google Scholar]
  86. Langacker, R.W
    (1987) Foundations of Cognitive Grammar: Theoretical Prerequisites. Stanford, CA: Stanford University Press.
    [Google Scholar]
  87. Larson-Hall, J
    (2010) A Guide to Doing Statistics in Second Language Research Using SPSS. New York: Routledge.
    [Google Scholar]
  88. Lehrer, A
    (1974) Semantic Fields and Lexical Structure. Amsterdam: North Holland Publishing Company.
    [Google Scholar]
  89. Levshina, N
    (2011) Doe wat je niet laten kan [Do what you cannot let]: A usage-based analysis of Dutch causative constructions. PhD diss., University of Leuven.
    [Google Scholar]
  90. (2014) Geographic variation of quite + ADJ in twenty national varieties of English: A pilot study. Yearbook of the German Cognitive Linguistics Association, 2, 109–126. doi: 10.1515/gcla‑2014‑0008
    https://doi.org/10.1515/gcla-2014-0008 [Google Scholar]
  91. . (In preparation). Convergent evidence of divergent knowledge: A study of the associations between the Russian ditransitive construction and its collexemes.
  92. Levshina, N. , Geeraerts, D. , & Speelman, D
    (2011) Changing the world vs. changing the mind: Distinctive collexeme analysis of the causative construction with doen in Belgian and Netherlandic Dutch. In F. Gregersen , J. Parrot , & P. Quist (Eds.), Language variation - European perspectives III. Selected papers from the 5th International Conference on Language Variation in Europe, Copenhagen, June 2009 (pp. 111–123). Amsterdam: John Benjamins. doi: 10.1075/silv.7.09lev
    https://doi.org/10.1075/silv.7.09lev [Google Scholar]
  93. (2013) Towards a 3D-Grammar: Interaction of linguistic and extralinguistic factors in the use of Dutch causative constructions. Journal of Pragmatics, 52, 34–48. doi: 10.1016/j.pragma.2012.12.013
    https://doi.org/10.1016/j.pragma.2012.12.013 [Google Scholar]
  94. Levshina, N. , & Heylen, K
    (2014) A radically data-driven construction grammar: Experiments with Dutch causative constructions. In R. Boogaart , T. Colleman , & G. Rutten (Eds.), Extending the Scope of Construction Grammar (pp. 17–46). Berlin/New York: Mouton de Gruyter.
    [Google Scholar]
  95. Leys, C. , Ley, C. , Klein, O. , Bernard, P. , & Licata, L
    (2013) Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49, 764–766. doi: 10.1016/j.jesp.2013.03.013
    https://doi.org/10.1016/j.jesp.2013.03.013 [Google Scholar]
  96. Lijffijt, J. , & Gries, S. Th
    (2012) Correction to “Dispersions and adjusted frequencies in corpora”. International Journal of Corpus Linguistics, 17(1), 147–149. doi: 10.1075/ijcl.17.1.08lij
    https://doi.org/10.1075/ijcl.17.1.08lij [Google Scholar]
  97. Lin, D
    (1998) Automatic retrieval and clustering of similar words. Proceedings of the 17th International Conference on Computational linguistics , Montreal, Canada, August 1998 (pp. 768–774). doi: 10.3115/980432.980696
    https://doi.org/10.3115/980432.980696 [Google Scholar]
  98. Louviere, J.J. , Hensher, D.A. , & Swait, J.D
    (2000) Stated Choice Methods: Analysis and application. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511753831
    https://doi.org/10.1017/CBO9780511753831 [Google Scholar]
  99. Lund, K. , & Burgess, C
    (1996) Producing high-dimensional semantic spaces from lexical co-occurrences. Behavior Research Methods, Instruments, & Computers, 28, 203–208. doi: 10.3758/BF03204766
    https://doi.org/10.3758/BF03204766 [Google Scholar]
  100. Manning, C. , & Schütze, H
    (1999) Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.
    [Google Scholar]
  101. Matloff, N
    (2011) The Art of R Programming: A Tour of Statistical Software Design. San Francisco: No Starch Press.
    [Google Scholar]
  102. Michelbacher, L. , Evert, S. , & Schutze, H
    (2011) Asymmetry in corpus-derived and human word associations. Corpus Linguistics and Linguistic Theory, 7(2), 245–276. doi: 10.1515/cllt.2011.012
    https://doi.org/10.1515/cllt.2011.012 [Google Scholar]
  103. Miller, G.A. , & Charles, W.G
    (1991) Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1), 1–28. doi: 10.1080/01690969108406936
    https://doi.org/10.1080/01690969108406936 [Google Scholar]
  104. Mitchell, J. , & Lapata, M
    (2010) Composition in distributional models of semantics. Cognitive Science, 34(8), 1388–1439. doi: 10.1111/j.1551‑6709.2010.01106.x
    https://doi.org/10.1111/j.1551-6709.2010.01106.x [Google Scholar]
  105. Newman, J
    (2011) Corpora and cognitive linguistics. Brazilian Journal of Applied Linguistics, 11(2), 521–559.
    [Google Scholar]
  106. Núñez, R.E. , & Sweetser, E
    (2006) With the future behind them: Convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive Science, 30, 401–450. doi: 10.1207/s15516709cog0000_62
    https://doi.org/10.1207/s15516709cog0000_62 [Google Scholar]
  107. Pado, S. , & Lapata, M
    (2007) Dependency-based construction of Semantic Space Models. Computational Linguistics, 33(2), 161–199. doi: 10.1162/coli.2007.33.2.161
    https://doi.org/10.1162/coli.2007.33.2.161 [Google Scholar]
  108. Peirsman, Y
    (2008) Word Space Models of semantic similarity and relatedness. In Proceedings of the ESSLLI-2008 Student Session , Hamburg, Germany.
    [Google Scholar]
  109. Peirsman, Y. , Heylen, K. , & Geeraerts, D
    (2010) Applying Word Space Models to sociolinguistics. Religion names before and after 9/11. In D. Geeraerts , G. Kristiansen , & Y. Peirsman (Eds.), Recent Advances in Cognitive Sociolinguistics (pp. 111–137). Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110226461
    https://doi.org/10.1515/9783110226461 [Google Scholar]
  110. Paivio, A. , Juille, J.C. , & Madigan, S
    (1968) Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76(1, Pt. 2), 1–25. doi: 10.1037/h0025327
    https://doi.org/10.1037/h0025327 [Google Scholar]
  111. Paradis, C
    (1997) Degree Modifiers of Adjectives in Spoken British English. Lund: Lund University Press.
    [Google Scholar]
  112. Rosch Heider, E. , & Olivier, D.C
    (1972) The structure of the color space in naming and memory for two languages. Cognitive Psychology, 3, 337–345. doi: 10.1016/0010‑0285(72)90011‑4
    https://doi.org/10.1016/0010-0285(72)90011-4 [Google Scholar]
  113. Rosch, E
    (1975) Cognitive representation of semantic categories. Journal of Experimental Psychology, 104(3), 192–233. doi: 10.1037/0096‑3445.104.3.192
    https://doi.org/10.1037/0096-3445.104.3.192 [Google Scholar]
  114. Rosch, E. , & Mervis, C.B
    (1975) Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605. doi: 10.1016/0010‑0285(75)90024‑9
    https://doi.org/10.1016/0010-0285(75)90024-9 [Google Scholar]
  115. Salkind, N.J
    (2011) Statistics for People Who (Think They) Hate Statistics (4th ed.). Los Angeles: Sage.
    [Google Scholar]
  116. Schmid, H.-J
    (2000) English Abstract Nouns as Conceptual Shells. From corpus to cognition. Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110808704
    https://doi.org/10.1515/9783110808704 [Google Scholar]
  117. Schütze, H
    (1992) Dimensions of meaning. In Proceedings of Supercomputing 92 (pp.787–796). Minneapolis, MN. doi: 10.1109/SUPERC.1992.236684
    https://doi.org/10.1109/SUPERC.1992.236684 [Google Scholar]
  118. Senghas, A. , & Coppola, M
    (2001) Children creating language: How Nicaraguan Sign Language acquired a spatial grammar. Psychological Science, 12(4), 323–328. doi: 10.1111/1467‑9280.00359
    https://doi.org/10.1111/1467-9280.00359 [Google Scholar]
  119. Senghas, A. , Kita, S. , & Özyürek, A
    (2004) Children creating core properties of language: Evidence from an emerging Sign Language in Nicaragua. Science, 305(5691), 1779–1782. doi: 10.1126/science.1100199
    https://doi.org/10.1126/science.1100199 [Google Scholar]
  120. Sheskin, D.J
    (2011) Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, FL: Chapman and Hall/CRC Press.
    [Google Scholar]
  121. Speelman, D. , & Geeraerts, D
    (2009) Causes for causatives: The case of Dutch ‘doen’ and ‘laten’. In T. Sanders & E. Sweetser (Eds.), Causal Categories in Discourse and Cognition (pp. 173–204). Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110224429.173
    https://doi.org/10.1515/9783110224429.173 [Google Scholar]
  122. Steels, L
    (Ed.) (2012) Experiments in Cultural Language Evolution. Amsterdam: John Benjamins. doi: 10.1075/ais.3
    https://doi.org/10.1075/ais.3 [Google Scholar]
  123. Steen, G.J. , Dorst, A.G. , Herrmann, J.B. , Kaal, A.A. , Krennmayr, T. , & Pasma, T
    (2010) A Method for Linguistic Metaphor Identification. From MIP to MIPVU. Amsterdam: John Benjamins. doi: 10.1075/celcr.14
    https://doi.org/10.1075/celcr.14 [Google Scholar]
  124. Stefanowitsch, A
    (2001) Constructing causation: A construction grammar approach to analytic causatives. PhD diss., Rice University.
    [Google Scholar]
  125. (2010) Empirical Cognitive Semantics: Some thoughts. In D. Glynn & K. Fischer (Eds.), Quantitative Methods in Cognitive Semantics: Corpus-driven Approaches (pp. 355–380). Berlin/New York: De Gruyter Mouton. doi: 10.1515/9783110226423.355
    https://doi.org/10.1515/9783110226423.355 [Google Scholar]
  126. Stefanowitsch, A. , & Gries, S. Th
    (2003) Collostructions: Investigating the interaction of words and constructions. International Journal of Corpus Linguistics, 8(2), 209–243. doi: 10.1075/ijcl.8.2.03ste
    https://doi.org/10.1075/ijcl.8.2.03ste [Google Scholar]
  127. (2003) Covarying collexemes. Corpus Linguistics and Linguistic Theory, 1(1), 1–43. doi: 10.1515/cllt.2005.1.1.1
    https://doi.org/10.1515/cllt.2005.1.1.1 [Google Scholar]
  128. Sweetser, E
    (1990) From Etymology to Pragmatics. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511620904
    https://doi.org/10.1017/CBO9780511620904 [Google Scholar]
  129. Szmrecsanyi, B
    (2010) The English genitive alternation in a cognitive sociolinguistics perspective. In D. Geeraerts , G. Kristiansen , & Y. Peirsman (Eds.), Advances in Cognitive Sociolinguistics (pp. 141–166). Berlin/New York: Mouton de Gruyter. doi: 10.1515/9783110226461.139
    https://doi.org/10.1515/9783110226461.139 [Google Scholar]
  130. Tagliamonte, S. , & Baayen, R.H
    (2012) Models, forests and trees of York English: Was/were variation as a case study for statistical practice. Language Variation and Change, 24(2), 135–178. doi: 10.1017/S0954394512000129
    https://doi.org/10.1017/S0954394512000129 [Google Scholar]
  131. Talmy, L
    (1985) Lexicalization patterns: Semantic structure in lexical forms. In T. Shopen (Ed.), Grammatical Categories and the Lexicon, Vol. III (pp. 57–149). Cambridge: Cambridge University Press.
    [Google Scholar]
  132. (2000) Toward a Cognitive Semantics. Cambridge, MA: MIT Press.
    [Google Scholar]
  133. Taylor, J
    (2012) The Mental Corpus. How Language is Represented in the Mind. Oxford: Oxford University Press. doi: 10.1093/acprof:oso/9780199290802.001.0001
    https://doi.org/10.1093/acprof:oso/9780199290802.001.0001 [Google Scholar]
  134. Teetor, P
    (2011) R Cookbook. Sebastopol, CA: O’Reilly Media.
    [Google Scholar]
  135. Turney, P.D. , & Pantel, P
    (2010) From frequency to meaning: Vector Space Models of semantics. Journal of Articial Intelligence Research, 37, 141–188.
    [Google Scholar]
  136. Urdan, T.C
    (2010) Statistics in Plain English (3rd ed.). New York: Routledge.
    [Google Scholar]
  137. Verhagen, A. , & Kemmer, S
    (1997) Interaction and causation: Causative constructions in modern standard Dutch. Journal of Pragmatics, 24, 61–82. doi: 10.1016/S0378‑2166(96)00003‑3
    https://doi.org/10.1016/S0378-2166(96)00003-3 [Google Scholar]
  138. Verhoeven, J. , De Pauw, G. , & Kloots, H
    (2004) Speech rate in a pluricentric language: A comparison between Dutch in Belgium and the Netherlands. Language and Speech, 47(3), 297–308. doi: 10.1177/00238309040470030401
    https://doi.org/10.1177/00238309040470030401 [Google Scholar]
  139. Wickham, H
    (2009) ggplot2: Elegant Graphics for Data Analysis. New York: Springer. doi: 10.1007/978‑0‑387‑98141‑3
    https://doi.org/10.1007/978-0-387-98141-3 [Google Scholar]
  140. Wiechmann, D
    (2008) On the computation of Collostruction Strength. Corpus Linguistics and Linguistic Theory, 4(2), 253–290. doi: 10.1515/CLLT.2008.011
    https://doi.org/10.1515/CLLT.2008.011 [Google Scholar]
  141. Wierzbicka, A
    (2006) English: Meaning and Culture. Oxford: Oxford University Press. doi: 10.1093/acprof:oso/9780195174748.001.0001
    https://doi.org/10.1093/acprof:oso/9780195174748.001.0001 [Google Scholar]
  142. Winke, P. , Gass, S. , & Sydorenko, T
    (2010) The effects of captioning videos used for foreign language listening activities. Language Learning and Technology, 14(1), 65–86.
    [Google Scholar]
  143. Wolk, C. , Bresnan, J. , Rosenbach, A. , & Szmrecsanyi, B
    (2013) Dative and genitive variability in Late Modern English: Exploring cross-constructional variation and change. Diachronica, 30(3), 382–419. doi: 10.1075/dia.30.3.04wol
    https://doi.org/10.1075/dia.30.3.04wol [Google Scholar]
  144. Wulff, S
    (2006) Go-V vs. go-and-V in English: A case of constructional synonymy?In S. Th. Gries & A. Stefanowitsch (Eds.), Corpora in Cognitive Linguistics. Corpus-based Approaches to Syntax and Lexis (pp. 101–125). Berlin/New York: Mouton de Gruyter.
    [Google Scholar]
  145. Wulff, S. , Gries, S. Th. , & Stefanowitsch, A
    (2007) Brutal Brits and persuasive Americans: Variety-specific meaning construction in the into-causative. In G. Radden , K.-M. Köpcke , T. Berg , & P. Siemund (Eds.), Aspects of Meaning Construction (pp. 265–281). Amsterdam: John Benjamins. doi: 10.1075/z.136.17wul
    https://doi.org/10.1075/z.136.17wul [Google Scholar]
  146. Zipf, G.K
    (1935) The Psycho-Biology of Language. Cambridge, MA: MIT Press.
    [Google Scholar]
  147. (1949) Human Behavior and the Principle of Least Effort. An Introduction to Human Ecology. Cambridge, MA: Addison Wesley.
    [Google Scholar]
/content/books/9789027268457
Loading
/content/books/9789027268457
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Chapter
10
5
Chapter
content/books/9789027268457
Book
false
Loading
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error