1887

Implicit statistical learning and language acquisition

Experience-dependent constraints on learning

image of Implicit statistical learning and language acquisition

Acquiring spoken language involves implicitly learning the statistical relations among language units. In this chapter, we review recent behavioral and neurophysiological findings from our research group that illuminate the relation of this type of ‘implicit statistical learning’ (ISL) to language acquisition. First, we review evidence illustrating that ISL mechanisms enable the learner to predict upcoming language units. Second, we show modality constraints affecting the operation of ISL mechanisms, with auditory and visual learning biased to learn different types of patterns. Third, we demonstrate that under certain developmental conditions typical ISL abilities are altered, which can detrimentally affect subsequent language acquisition. These findings highlight the experience-dependent nature of ISL and its relation to typical and atypical language acquisition.

  • Affiliations: 1: Eastern Illinois University; 2: Georgia State University

References

  1. Altmann, G.T.M. , Dienes, Z. , & Goode, A
    (1995) Modality independence of implicitly learned grammatical knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 899–912. doi: 10.1037/0278‑7393.21.4.899
    https://doi.org/10.1037/0278-7393.21.4.899 [Google Scholar]
  2. Arciuli, J. , & Simpson, I
    (2012) Statistical learning is related to reading ability in children and adults. Cognitive Science, 36, 286–304. doi: 10.1111/j.1551‑6709.2011.01200.x
    https://doi.org/10.1111/j.1551-6709.2011.01200.x [Google Scholar]
  3. Bauer, P.J. , & Mandler, J.M
    (1992) Putting the horse before the cart: The use of temporal order in recall of events by one-year-old children. Developmental Psychology, 28(3), 441–452. doi: 10.1037/0012‑1649.28.3.441
    https://doi.org/10.1037/0012-1649.28.3.441 [Google Scholar]
  4. Bernstein, L.E
    (2005) Phonetic processing by the speech perceiving brain. In D.B. Pisoni & R.E. Remez (Eds.), Handbook of speech perception (pp. 79–98). Malden, MA: Blackwell. doi: 10.1002/9780470757024.ch4
    https://doi.org/10.1002/9780470757024.ch4 [Google Scholar]
  5. Christiansen, M.H. , Conway, C.M. , & Onnis, L
    (2012) Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and Cognitive Processes, 27, 231–256. doi: 10.1080/01690965.2011.606666
    https://doi.org/10.1080/01690965.2011.606666 [Google Scholar]
  6. Conway, C.M. , Bauerschmidt, A. , Huang, S.S. , & Pisoni, D.B
    (2010) Implicit statistical learning in language processing: Word predictability is the key. Cognition, 114, 356–371. doi: 10.1016/j.cognition.2009.10.009
    https://doi.org/10.1016/j.cognition.2009.10.009 [Google Scholar]
  7. Conway, C.M. , & Christiansen, M.H
    (2009) Seeing and hearing in space and time: Effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 21, 561–580. doi: 10.1080/09541440802097951
    https://doi.org/10.1080/09541440802097951 [Google Scholar]
  8. (2006) Statistical learning within and between modalities: Pitting abstract against stimulus-specific representations. Psychological Science, 17, 905–912. doi: 10.1111/j.1467‑9280.2006.01801.x
    https://doi.org/10.1111/j.1467-9280.2006.01801.x [Google Scholar]
  9. (2005) Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 24–39. doi: 10.1037/0278‑7393.31.1.24
    https://doi.org/10.1037/0278-7393.31.1.24 [Google Scholar]
  10. Conway, C.M. , Deocampo, J. , Walk, A.M. , Anaya, E.M. , & Pisoni, D.B
    (2014) Deaf children with cochlear implants do not appear to use sentence context to help recognize spoken words. Journal of Speech, Language, and Hearing Research, 57(6), 2174–2190. doi: 10.1044/2014_JSLHR‑L‑13‑0236
    https://doi.org/10.1044/2014_JSLHR-L-13-0236 [Google Scholar]
  11. Conway, C.M. , & Christiansen, M.H
    (2001) Sequential learning in non-human primates. Trends in Cognitive Sciences, 5(12), 539–546. doi: 10.1016/S1364‑6613(00)01800‑3
    https://doi.org/10.1016/S1364-6613(00)01800-3 [Google Scholar]
  12. Conway, C.M. , Goldstone, R.L. , & Christiansen, M.H
    (2007) Spatial constraints on visual statistical learning of multi-element scenes. In D.S. McNamara & J.G. Trafton (Eds.), Proceedings of the 29th Annual Meeting of the Cognitive Science Society (pp.185–190). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  13. Conway, C.M. , Gremp, M.A. , Walk, A.D. , Bauernschmidt, A. , & Pisoni, D.B
    (2012) Can we enhance domain-general learning abilities to improve language function?In P. Rebuschat & J. Williams (Eds.), Statistical learning and language acquisition (pp. 305–336). Berlin: De Gruyter Mouton.
    [Google Scholar]
  14. Conway, C.M. , Karpicke, J. , Anaya, E.M. , Henning, S.C. , Kronenberger, W.G. , & Pisoni, D.B
    (2011) Nonverbal cognition in deaf children following cochlear implantation: Motor sequencing disturbances mediate language delays. Developmental Neuropsychology, 36, 237–254. doi: 10.1080/87565641.2010.549869
    https://doi.org/10.1080/87565641.2010.549869 [Google Scholar]
  15. Conway, C.M. , & Pisoni, D.B
    (2008) Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Annals of the New York Academy of Sciences,1145, 113–131. doi: 10.1196/annals.1416.009
    https://doi.org/10.1196/annals.1416.009 [Google Scholar]
  16. Conway, C.M. , Pisoni, D.B. , Anaya, E.M. , Karpicke, J. , & Henning, S.C
    (2011) Implicit sequence learning in deaf children with cochlear implants. Developmental Science, 14, 69–82. doi: 10.1111/j.1467‑7687.2010.00960.x
    https://doi.org/10.1111/j.1467-7687.2010.00960.x [Google Scholar]
  17. Conway, C.M. , Pisoni, D.B. , & Kronenberger, W.G
    (2009) The importance of sound for cognitive sequencing abilities: The auditory scaffolding hypothesis. Current Directions in Psychological Science, 18, 275–279. doi: 10.1111/j.1467‑8721.2009.01651.x
    https://doi.org/10.1111/j.1467-8721.2009.01651.x [Google Scholar]
  18. Coulson, S. , King, J. , & Kutas, M
    (1998) Expect the unexpected: Event-related brain response to morphosyntactic violations. Language and Cognitive Processes, 13, 21–58. doi: 10.1080/016909698386582
    https://doi.org/10.1080/016909698386582 [Google Scholar]
  19. DeKeyser, R.M
    (1995) Learning second language grammar rules: An experiment with a miniature linguistic system. Studies in Second Language Acquisition, 17(3): 379–410. doi: 10.1017/S027226310001425X
    https://doi.org/10.1017/S027226310001425X [Google Scholar]
  20. Dye, M.W.G. , & Bavelier, D
    (2010) Attentional enhancements and deficits in deaf populations: An integrative review. Restorative Neurology and Neuroscience, 28, 181–192.
    [Google Scholar]
  21. Eckerth, J. , & Tavakoli, P
    (2012) The effects of word exposure frequency and elaboration of word processing on incidental L2 vocabulary acquisition through reading. Language Teaching Research, 16(2), 227–252. doi: 10.1177/1362168811431377
    https://doi.org/10.1177/1362168811431377 [Google Scholar]
  22. Eden, G.F. , Stein, J.F. , Wood, H.M. , & Wood, F.B
    (1995) Temporal and spatial processing in reading disabled and normal children. Cortex, 31, 451–468. doi: 10.1016/S0010‑9452(13)80059‑7
    https://doi.org/10.1016/S0010-9452(13)80059-7 [Google Scholar]
  23. Eisenberg, L.S. , Martinez, A.S. , Holowecky, S.R. , & Pogorelsky, S
    (2002) Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants. Ear & Hearing, 23(5), 450–462. doi: 10.1097/00003446‑200210000‑00007
    https://doi.org/10.1097/00003446-200210000-00007 [Google Scholar]
  24. Elman, J.L
    (1993) Learning and development in neural networks: The importance of starting small. Cognition, 48, 71–99. doi: 10.1016/0010‑0277(93)90058‑4
    https://doi.org/10.1016/0010-0277(93)90058-4 [Google Scholar]
  25. (1991) Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195–225. doi: 10.1007/BF00114844
    https://doi.org/10.1007/BF00114844 [Google Scholar]
  26. Emberson, L.L. , Conway, C.M. , & Christiansen, M.H
    (2011) Timing is everything: Changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. Quarterly Journal of Experimental Psychology, 64, 1021–1040. doi: 10.1080/17470218.2010.538972
    https://doi.org/10.1080/17470218.2010.538972 [Google Scholar]
  27. Feldman, J. , Kerr, B. , & Streissguth, A.P
    (1995) Correlational analyses of procedural and declarative learning performance. Intelligence, 20, 87–114. doi: 10.1016/0160‑2896(95)90007‑1
    https://doi.org/10.1016/0160-2896(95)90007-1 [Google Scholar]
  28. Fiser, J. , & Aslin, R.N
    (2002) Statistical learning of new visual feature combinations by infants. PNAS, 99(24), 15822–15826. doi: 10.1073/pnas.232472899
    https://doi.org/10.1073/pnas.232472899 [Google Scholar]
  29. Gathercole, S.E. , & Baddeley, A.D
    (1989) Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28, 200–213. doi: 10.1016/0749‑596X(89)90044‑2
    https://doi.org/10.1016/0749-596X(89)90044-2 [Google Scholar]
  30. Giroux, I. & Rey, A
    (2009) Lexical and sublexical units in speech perception. Cognitive Science, 33(2), 260–272. doi: 10.1111/j.1551‑6709.2009.01012.x
    https://doi.org/10.1111/j.1551-6709.2009.01012.x [Google Scholar]
  31. Goldberg, A
    (1993) Constructions: A new theoretical approach to language. Trends in Cognitive Sciences, 7(5), 219- 224. doi: 10.1016/S1364‑6613(03)00080‑9
    https://doi.org/10.1016/S1364-6613(03)00080-9 [Google Scholar]
  32. Goschke, T. & Bolte, A
    (2012) On the modularity of implicit sequence learning: Independent acquisition of spatial, symbolic, and manual sequences. Cognitive Psychology, 65, 284–320. doi: 10.1016/j.cogpsych.2012.04.002
    https://doi.org/10.1016/j.cogpsych.2012.04.002 [Google Scholar]
  33. Hammill, D.D. , Brown, V.L. , Larsen, S.C. , & Wiederholt, J.L
    (1994) Test of adolescent and adult language: Assessing linguistic aspects of listening, speaking, reading, and writing (3rd ed.). Austin, TX: Pro-Ed.
    [Google Scholar]
  34. Hawkins, J
    (2004) On intelligence. New York, NY: St. Martin’s Griffin.
    [Google Scholar]
  35. Hespos, S.J. , Saylor, M.M. & Grossman, S.R
    (2009) Infants ability to parse continuous actions. Developmental Psychology, 45(2), 575–585. doi: 10.1037/a0014145
    https://doi.org/10.1037/a0014145 [Google Scholar]
  36. Howard Jr., J.H. , Howard, D.V. , Japikse, K.C. , & Eden, F.G
    (2006) Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44, 1131–1144. doi: 10.1016/j.neuropsychologia.2005.10.015
    https://doi.org/10.1016/j.neuropsychologia.2005.10.015 [Google Scholar]
  37. Hulme, C. , & Snowling, M
    (1992) Deficits in output phonology: An explanation of reading failure. Cognitive Neuropsychology, 9, 47–72. doi: 10.1080/02643299208252052
    https://doi.org/10.1080/02643299208252052 [Google Scholar]
  38. Hulstijn, J.H
    (2005) Theoretical and empirical issues in the study of implicit and explicit second-language learning. Studies in Second Language Acquisition, 27, 129–140. doi: 10.1017/S0272263105050084
    https://doi.org/10.1017/S0272263105050084 [Google Scholar]
  39. Janacsek, K. , Fiser, J. , & Nemeth, D
    (2012) The best time to acquire new skills: Age-related differences in implicit sequence learning across the human lifespan. Developmental Science, 15, 496–505. doi: 10.1111/j.1467‑7687.2012.01150.x
    https://doi.org/10.1111/j.1467-7687.2012.01150.x [Google Scholar]
  40. Jones, J. , & Pashler, H
    (2007) Is the mind inherently forward looking? Comparing prediction with retrodiction. Psychonomic Bulletin & Review, 14, 295–300. doi: 10.3758/BF03194067
    https://doi.org/10.3758/BF03194067 [Google Scholar]
  41. Jost, E. , Conway, C.M. , Purdy, J.D. , & Hendricks, M.A
    (2011) Neurophysiological correlates of visual statistical learning in adults and children. In L. Carlson , C. Hoelscher , & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2526–2531). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  42. Jusczyk, P. , Houston, D.M. , & Newsome, M
    (1999) The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39, 159–207. doi: 10.1006/cogp.1999.0716
    https://doi.org/10.1006/cogp.1999.0716 [Google Scholar]
  43. Kidd, E
    (2012) Implicit statistical learning is directly associated with the acquisition of syntax. Developmental Psychology, 48, 171–184. doi: 10.1037/a0025405
    https://doi.org/10.1037/a0025405 [Google Scholar]
  44. Kirkham, N.Z. , Slemmer, J.A. , & Johnson, S.P
    (2002) Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35–B42. doi: 10.1016/S0010‑0277(02)00004‑5
    https://doi.org/10.1016/S0010-0277(02)00004-5 [Google Scholar]
  45. Kirsner, K. , Milech, D. , & Standen, P
    (1983) Common and modality-specific processes in the mental lexicon. Memory & Cognition, 11(6), 621–630. doi: 10.3758/BF03198287
    https://doi.org/10.3758/BF03198287 [Google Scholar]
  46. Klingberg, T
    (2010) Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi: 10.1016/j.tics.2010.05.002
    https://doi.org/10.1016/j.tics.2010.05.002 [Google Scholar]
  47. Krashen, S.D. , & Terrell, T.D
    (1983) The natural approach: Language acquisition in the classroom. San Fransisco, CA: The Alemany Press.
    [Google Scholar]
  48. Kubovy, M
    (1988) Should we resist the seductiveness of the space:time::vision:audition analogy?Journal of Experimental Psychology: Human Perception and Performance, 14, 318–320. doi: 10.1037/0096‑1523.14.2.318
    https://doi.org/10.1037/0096-1523.14.2.318 [Google Scholar]
  49. Kuhl, P.K
    (2004) Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831–843. doi: 10.1038/nrn1533
    https://doi.org/10.1038/nrn1533 [Google Scholar]
  50. Kveraga, K. , Ghuman, A.S. , & Bar, M
    (2007) Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168. doi: 10.1016/j.bandc.2007.06.007
    https://doi.org/10.1016/j.bandc.2007.06.007 [Google Scholar]
  51. Lam, W.Y.K
    (2009) Examining the effects of metacognitive strategy instruction on ESL group discussions: A synthesis of approaches. Language Teaching Resesarch, 13(2), 129–150. doi: 10.1177/1362168809103445
    https://doi.org/10.1177/1362168809103445 [Google Scholar]
  52. Lashley, K.S
    (1951[2004]) The problem of serial order in behavior. First language acquisition: The essential readings, B. Lust & C. Foley (Eds.). Malden, MA: Blackwell.
    [Google Scholar]
  53. Leclercq, A. , & Majerus, S
    (2010) Serial order short term memory predicts vocabulary development: Evidence from a longitudinal study. Developmental Psychology, 46(2), 417–427. doi: 10.1037/a0018540
    https://doi.org/10.1037/a0018540 [Google Scholar]
  54. Manza, L. , & Reber, A.S
    (1997) Representing artificial grammars: Transfer across stimulus forms and modalities. In D.C. Berry (Ed.), How implicit is implicit learning? (pp. 73–106). New York, NY: Oxford University Press. doi: 10.1093/acprof:oso/9780198523512.003.0004
    https://doi.org/10.1093/acprof:oso/9780198523512.003.0004 [Google Scholar]
  55. Mecklenbräuker, S. , Hupbach, A. , & Wippich, W
    (2003) Age-related improvements in a conceptual implicit memory test. Memory, 1208–1217. doi: 10.3758/BF03195804
    https://doi.org/10.3758/BF03195804 [Google Scholar]
  56. Misyak, J.B. , & Christiansen, M.H
    (2012) Statistical learning and language: An individual differences study. Language Learning, 62, 302–331. doi: 10.1111/j.1467‑9922.2010.00626.x
    https://doi.org/10.1111/j.1467-9922.2010.00626.x [Google Scholar]
  57. Newport, E.L
    (1990) Maturational constraints on language learning. Cognitive Science, 14, 11–28. doi: 10.1207/s15516709cog1401_2
    https://doi.org/10.1207/s15516709cog1401_2 [Google Scholar]
  58. Perruchet, P. , & Vinter, A
    (1998) Parser: A model for word segmentation. Journal of Memory and Language, 39, 246–263. doi: 10.1006/jmla.1998.2576
    https://doi.org/10.1006/jmla.1998.2576 [Google Scholar]
  59. Poletiek, F.H. , Conway, C.M. , Ellefson, M.R. , & Christiansen, M.H
    . (under review). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Journal of Experimental Psychology: General.
    [Google Scholar]
  60. Reber, A.S
    (1989) Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118(3), 219–235. doi: 10.1037/0096‑3445.118.3.219
    https://doi.org/10.1037/0096-3445.118.3.219 [Google Scholar]
  61. (1967) Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 77, 317–327.
    [Google Scholar]
  62. (1993) Implicit learning and tacit knowledge: An essay on the cognitive unconscious. Oxford: Oxford University Press.
    [Google Scholar]
  63. Rosenbaum, D.A. , Cohen, R.G. , Jax, S.A. , Weiss, D.J. , & van der Wel, R
    (2007) The problem of serial order in behavior: Lashley’s legacy. Human Movement Science, 26, 525–554. doi: 10.1016/j.humov.2007.04.001
    https://doi.org/10.1016/j.humov.2007.04.001 [Google Scholar]
  64. Rüsseler, J. , & Roesler, F
    (2000) Implicit and explicit learning of event sequences: Evidence for distinct coding of perceptual and motor representations. Acta Psychologica, 104, 45–67. doi: 10.1016/S0001‑6918(99)00053‑0
    https://doi.org/10.1016/S0001-6918(99)00053-0 [Google Scholar]
  65. Saffran, J.R
    (2001) The use of predictive dependencies in language learning. Journal of Memory and Language, 44, 493–515. doi: 10.1006/jmla.2000.2759
    https://doi.org/10.1006/jmla.2000.2759 [Google Scholar]
  66. (2002) Constraints on language learning. Journal of Memory and Language, 47(1), 172–196. doi: 10.1006/jmla.2001.2839
    https://doi.org/10.1006/jmla.2001.2839 [Google Scholar]
  67. Saffran, J.R. , Aslin, R.N. , & Newport, E.L
    (1996) Statistical learning by 8-month-old infants. Science, 274, 1926–1928. doi: 10.1126/science.274.5294.1926
    https://doi.org/10.1126/science.274.5294.1926 [Google Scholar]
  68. Saffran, J.R. , Johnson, E.K. , Aslin, R.N. & Newport, E.L
    (1999) Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52. doi: 10.1016/S0010‑0277(98)00075‑4
    https://doi.org/10.1016/S0010-0277(98)00075-4 [Google Scholar]
  69. Schlaghecken, F. , Stuermer, B. , & Eimer, M
    (2000) Chunking processes in the learning of event sequences: Electrophysiological indicators. Memory & Cogniton, 28(5), 821–831. doi: 10.3758/BF03198417
    https://doi.org/10.3758/BF03198417 [Google Scholar]
  70. Schmidt, R.W
    (1990) The role of consciousness in second language acquisition. Applied Linguistics, 11(2), 129–158. doi: 10.1093/applin/11.2.129
    https://doi.org/10.1093/applin/11.2.129 [Google Scholar]
  71. Shamma, S
    (2001) On the role of space and time in auditory processing. Trends in Cognitive Sciences, 5, 340–348. doi: 10.1016/S1364‑6613(00)01704‑6
    https://doi.org/10.1016/S1364-6613(00)01704-6 [Google Scholar]
  72. Sharon, T. , & Wynn, K
    (1998) Individuation of action from continuous motion. Psychological Science, 9, 357–362. doi: 10.1111/1467‑9280.00068
    https://doi.org/10.1111/1467-9280.00068 [Google Scholar]
  73. Robinson, C.W. , & Sloutsky, V.M
    (2007) Visual statistical learning: Getting some help from the auditory modality. In D.S. McNamara & J.G. Trafton (Eds.), Proceedings of the 29th Annual Cognitive Science Society (pp. 611–616). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  74. Robinson, P
    (1997) Learning simple and complex second language rules under implicit, incidental, rule-search, and instructed conditions. Studies in Second Language Acquisition, 18(1), 27–67. doi: 10.1017/S0272263100014674
    https://doi.org/10.1017/S0272263100014674 [Google Scholar]
  75. Thomas, K. , Hunt, R. , Vizueta, N. , Sommer, T. , Durston, S. , Yang, Y. , & Worden, M.S
    (2004) Evidence of developmental differences in implicit sequence learning: An fMRI study of children and adults. Journal of Cognitive Neuroscience, 16, 1339–1351. doi: 10.1162/0898929042304688
    https://doi.org/10.1162/0898929042304688 [Google Scholar]
  76. Turk-Browne, N.B. , & Scholl, B.J
    (2009) Flexible visual statistical learning: Transfer across space and time. Journal of Experimental Psychology: Human Perception and Performance, 35, 195–202. doi: 10.1037/0096‑1523.35.1.195
    https://doi.org/10.1037/0096-1523.35.1.195 [Google Scholar]
  77. Turk-Browne, N.B. , Scholl, B.J. , Chun, M.M. , & Johnson, M.K
    (2009) Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934–1945. doi: 10.1162/jocn.2009.21131
    https://doi.org/10.1162/jocn.2009.21131 [Google Scholar]
  78. Walk, A.M. , & Conway, C.M
    (2011) Multisensory statistical learning: Can associations across perceptual categories be acquired?In L. Carlson , C. Hoelscher , & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3337–3342). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  79. Zacks, J.M. , Speer, N.K. , Vettel, J.M. , & Jacoby, L.L
    (2006) Event understanding and memory in healthy aging and dementia of the Alzheimer type. Psychology & Aging, 21, 466–482. doi: 10.1037/0882‑7974.21.3.466
    https://doi.org/10.1037/0882-7974.21.3.466 [Google Scholar]
  80. Zacks, J.M. , & Swallow, K.M
    (2007) Event segmentation. Current Directions in Psychological Science, 16(2), 80–84. doi: 10.1111/j.1467‑8721.2007.00480.x
    https://doi.org/10.1111/j.1467-8721.2007.00480.x [Google Scholar]

References

  1. Altmann, G.T.M. , Dienes, Z. , & Goode, A
    (1995) Modality independence of implicitly learned grammatical knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 899–912. doi: 10.1037/0278‑7393.21.4.899
    https://doi.org/10.1037/0278-7393.21.4.899 [Google Scholar]
  2. Arciuli, J. , & Simpson, I
    (2012) Statistical learning is related to reading ability in children and adults. Cognitive Science, 36, 286–304. doi: 10.1111/j.1551‑6709.2011.01200.x
    https://doi.org/10.1111/j.1551-6709.2011.01200.x [Google Scholar]
  3. Bauer, P.J. , & Mandler, J.M
    (1992) Putting the horse before the cart: The use of temporal order in recall of events by one-year-old children. Developmental Psychology, 28(3), 441–452. doi: 10.1037/0012‑1649.28.3.441
    https://doi.org/10.1037/0012-1649.28.3.441 [Google Scholar]
  4. Bernstein, L.E
    (2005) Phonetic processing by the speech perceiving brain. In D.B. Pisoni & R.E. Remez (Eds.), Handbook of speech perception (pp. 79–98). Malden, MA: Blackwell. doi: 10.1002/9780470757024.ch4
    https://doi.org/10.1002/9780470757024.ch4 [Google Scholar]
  5. Christiansen, M.H. , Conway, C.M. , & Onnis, L
    (2012) Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and Cognitive Processes, 27, 231–256. doi: 10.1080/01690965.2011.606666
    https://doi.org/10.1080/01690965.2011.606666 [Google Scholar]
  6. Conway, C.M. , Bauerschmidt, A. , Huang, S.S. , & Pisoni, D.B
    (2010) Implicit statistical learning in language processing: Word predictability is the key. Cognition, 114, 356–371. doi: 10.1016/j.cognition.2009.10.009
    https://doi.org/10.1016/j.cognition.2009.10.009 [Google Scholar]
  7. Conway, C.M. , & Christiansen, M.H
    (2009) Seeing and hearing in space and time: Effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 21, 561–580. doi: 10.1080/09541440802097951
    https://doi.org/10.1080/09541440802097951 [Google Scholar]
  8. (2006) Statistical learning within and between modalities: Pitting abstract against stimulus-specific representations. Psychological Science, 17, 905–912. doi: 10.1111/j.1467‑9280.2006.01801.x
    https://doi.org/10.1111/j.1467-9280.2006.01801.x [Google Scholar]
  9. (2005) Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 24–39. doi: 10.1037/0278‑7393.31.1.24
    https://doi.org/10.1037/0278-7393.31.1.24 [Google Scholar]
  10. Conway, C.M. , Deocampo, J. , Walk, A.M. , Anaya, E.M. , & Pisoni, D.B
    (2014) Deaf children with cochlear implants do not appear to use sentence context to help recognize spoken words. Journal of Speech, Language, and Hearing Research, 57(6), 2174–2190. doi: 10.1044/2014_JSLHR‑L‑13‑0236
    https://doi.org/10.1044/2014_JSLHR-L-13-0236 [Google Scholar]
  11. Conway, C.M. , & Christiansen, M.H
    (2001) Sequential learning in non-human primates. Trends in Cognitive Sciences, 5(12), 539–546. doi: 10.1016/S1364‑6613(00)01800‑3
    https://doi.org/10.1016/S1364-6613(00)01800-3 [Google Scholar]
  12. Conway, C.M. , Goldstone, R.L. , & Christiansen, M.H
    (2007) Spatial constraints on visual statistical learning of multi-element scenes. In D.S. McNamara & J.G. Trafton (Eds.), Proceedings of the 29th Annual Meeting of the Cognitive Science Society (pp.185–190). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  13. Conway, C.M. , Gremp, M.A. , Walk, A.D. , Bauernschmidt, A. , & Pisoni, D.B
    (2012) Can we enhance domain-general learning abilities to improve language function?In P. Rebuschat & J. Williams (Eds.), Statistical learning and language acquisition (pp. 305–336). Berlin: De Gruyter Mouton.
    [Google Scholar]
  14. Conway, C.M. , Karpicke, J. , Anaya, E.M. , Henning, S.C. , Kronenberger, W.G. , & Pisoni, D.B
    (2011) Nonverbal cognition in deaf children following cochlear implantation: Motor sequencing disturbances mediate language delays. Developmental Neuropsychology, 36, 237–254. doi: 10.1080/87565641.2010.549869
    https://doi.org/10.1080/87565641.2010.549869 [Google Scholar]
  15. Conway, C.M. , & Pisoni, D.B
    (2008) Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Annals of the New York Academy of Sciences,1145, 113–131. doi: 10.1196/annals.1416.009
    https://doi.org/10.1196/annals.1416.009 [Google Scholar]
  16. Conway, C.M. , Pisoni, D.B. , Anaya, E.M. , Karpicke, J. , & Henning, S.C
    (2011) Implicit sequence learning in deaf children with cochlear implants. Developmental Science, 14, 69–82. doi: 10.1111/j.1467‑7687.2010.00960.x
    https://doi.org/10.1111/j.1467-7687.2010.00960.x [Google Scholar]
  17. Conway, C.M. , Pisoni, D.B. , & Kronenberger, W.G
    (2009) The importance of sound for cognitive sequencing abilities: The auditory scaffolding hypothesis. Current Directions in Psychological Science, 18, 275–279. doi: 10.1111/j.1467‑8721.2009.01651.x
    https://doi.org/10.1111/j.1467-8721.2009.01651.x [Google Scholar]
  18. Coulson, S. , King, J. , & Kutas, M
    (1998) Expect the unexpected: Event-related brain response to morphosyntactic violations. Language and Cognitive Processes, 13, 21–58. doi: 10.1080/016909698386582
    https://doi.org/10.1080/016909698386582 [Google Scholar]
  19. DeKeyser, R.M
    (1995) Learning second language grammar rules: An experiment with a miniature linguistic system. Studies in Second Language Acquisition, 17(3): 379–410. doi: 10.1017/S027226310001425X
    https://doi.org/10.1017/S027226310001425X [Google Scholar]
  20. Dye, M.W.G. , & Bavelier, D
    (2010) Attentional enhancements and deficits in deaf populations: An integrative review. Restorative Neurology and Neuroscience, 28, 181–192.
    [Google Scholar]
  21. Eckerth, J. , & Tavakoli, P
    (2012) The effects of word exposure frequency and elaboration of word processing on incidental L2 vocabulary acquisition through reading. Language Teaching Research, 16(2), 227–252. doi: 10.1177/1362168811431377
    https://doi.org/10.1177/1362168811431377 [Google Scholar]
  22. Eden, G.F. , Stein, J.F. , Wood, H.M. , & Wood, F.B
    (1995) Temporal and spatial processing in reading disabled and normal children. Cortex, 31, 451–468. doi: 10.1016/S0010‑9452(13)80059‑7
    https://doi.org/10.1016/S0010-9452(13)80059-7 [Google Scholar]
  23. Eisenberg, L.S. , Martinez, A.S. , Holowecky, S.R. , & Pogorelsky, S
    (2002) Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants. Ear & Hearing, 23(5), 450–462. doi: 10.1097/00003446‑200210000‑00007
    https://doi.org/10.1097/00003446-200210000-00007 [Google Scholar]
  24. Elman, J.L
    (1993) Learning and development in neural networks: The importance of starting small. Cognition, 48, 71–99. doi: 10.1016/0010‑0277(93)90058‑4
    https://doi.org/10.1016/0010-0277(93)90058-4 [Google Scholar]
  25. (1991) Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195–225. doi: 10.1007/BF00114844
    https://doi.org/10.1007/BF00114844 [Google Scholar]
  26. Emberson, L.L. , Conway, C.M. , & Christiansen, M.H
    (2011) Timing is everything: Changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. Quarterly Journal of Experimental Psychology, 64, 1021–1040. doi: 10.1080/17470218.2010.538972
    https://doi.org/10.1080/17470218.2010.538972 [Google Scholar]
  27. Feldman, J. , Kerr, B. , & Streissguth, A.P
    (1995) Correlational analyses of procedural and declarative learning performance. Intelligence, 20, 87–114. doi: 10.1016/0160‑2896(95)90007‑1
    https://doi.org/10.1016/0160-2896(95)90007-1 [Google Scholar]
  28. Fiser, J. , & Aslin, R.N
    (2002) Statistical learning of new visual feature combinations by infants. PNAS, 99(24), 15822–15826. doi: 10.1073/pnas.232472899
    https://doi.org/10.1073/pnas.232472899 [Google Scholar]
  29. Gathercole, S.E. , & Baddeley, A.D
    (1989) Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28, 200–213. doi: 10.1016/0749‑596X(89)90044‑2
    https://doi.org/10.1016/0749-596X(89)90044-2 [Google Scholar]
  30. Giroux, I. & Rey, A
    (2009) Lexical and sublexical units in speech perception. Cognitive Science, 33(2), 260–272. doi: 10.1111/j.1551‑6709.2009.01012.x
    https://doi.org/10.1111/j.1551-6709.2009.01012.x [Google Scholar]
  31. Goldberg, A
    (1993) Constructions: A new theoretical approach to language. Trends in Cognitive Sciences, 7(5), 219- 224. doi: 10.1016/S1364‑6613(03)00080‑9
    https://doi.org/10.1016/S1364-6613(03)00080-9 [Google Scholar]
  32. Goschke, T. & Bolte, A
    (2012) On the modularity of implicit sequence learning: Independent acquisition of spatial, symbolic, and manual sequences. Cognitive Psychology, 65, 284–320. doi: 10.1016/j.cogpsych.2012.04.002
    https://doi.org/10.1016/j.cogpsych.2012.04.002 [Google Scholar]
  33. Hammill, D.D. , Brown, V.L. , Larsen, S.C. , & Wiederholt, J.L
    (1994) Test of adolescent and adult language: Assessing linguistic aspects of listening, speaking, reading, and writing (3rd ed.). Austin, TX: Pro-Ed.
    [Google Scholar]
  34. Hawkins, J
    (2004) On intelligence. New York, NY: St. Martin’s Griffin.
    [Google Scholar]
  35. Hespos, S.J. , Saylor, M.M. & Grossman, S.R
    (2009) Infants ability to parse continuous actions. Developmental Psychology, 45(2), 575–585. doi: 10.1037/a0014145
    https://doi.org/10.1037/a0014145 [Google Scholar]
  36. Howard Jr., J.H. , Howard, D.V. , Japikse, K.C. , & Eden, F.G
    (2006) Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44, 1131–1144. doi: 10.1016/j.neuropsychologia.2005.10.015
    https://doi.org/10.1016/j.neuropsychologia.2005.10.015 [Google Scholar]
  37. Hulme, C. , & Snowling, M
    (1992) Deficits in output phonology: An explanation of reading failure. Cognitive Neuropsychology, 9, 47–72. doi: 10.1080/02643299208252052
    https://doi.org/10.1080/02643299208252052 [Google Scholar]
  38. Hulstijn, J.H
    (2005) Theoretical and empirical issues in the study of implicit and explicit second-language learning. Studies in Second Language Acquisition, 27, 129–140. doi: 10.1017/S0272263105050084
    https://doi.org/10.1017/S0272263105050084 [Google Scholar]
  39. Janacsek, K. , Fiser, J. , & Nemeth, D
    (2012) The best time to acquire new skills: Age-related differences in implicit sequence learning across the human lifespan. Developmental Science, 15, 496–505. doi: 10.1111/j.1467‑7687.2012.01150.x
    https://doi.org/10.1111/j.1467-7687.2012.01150.x [Google Scholar]
  40. Jones, J. , & Pashler, H
    (2007) Is the mind inherently forward looking? Comparing prediction with retrodiction. Psychonomic Bulletin & Review, 14, 295–300. doi: 10.3758/BF03194067
    https://doi.org/10.3758/BF03194067 [Google Scholar]
  41. Jost, E. , Conway, C.M. , Purdy, J.D. , & Hendricks, M.A
    (2011) Neurophysiological correlates of visual statistical learning in adults and children. In L. Carlson , C. Hoelscher , & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2526–2531). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  42. Jusczyk, P. , Houston, D.M. , & Newsome, M
    (1999) The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39, 159–207. doi: 10.1006/cogp.1999.0716
    https://doi.org/10.1006/cogp.1999.0716 [Google Scholar]
  43. Kidd, E
    (2012) Implicit statistical learning is directly associated with the acquisition of syntax. Developmental Psychology, 48, 171–184. doi: 10.1037/a0025405
    https://doi.org/10.1037/a0025405 [Google Scholar]
  44. Kirkham, N.Z. , Slemmer, J.A. , & Johnson, S.P
    (2002) Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35–B42. doi: 10.1016/S0010‑0277(02)00004‑5
    https://doi.org/10.1016/S0010-0277(02)00004-5 [Google Scholar]
  45. Kirsner, K. , Milech, D. , & Standen, P
    (1983) Common and modality-specific processes in the mental lexicon. Memory & Cognition, 11(6), 621–630. doi: 10.3758/BF03198287
    https://doi.org/10.3758/BF03198287 [Google Scholar]
  46. Klingberg, T
    (2010) Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi: 10.1016/j.tics.2010.05.002
    https://doi.org/10.1016/j.tics.2010.05.002 [Google Scholar]
  47. Krashen, S.D. , & Terrell, T.D
    (1983) The natural approach: Language acquisition in the classroom. San Fransisco, CA: The Alemany Press.
    [Google Scholar]
  48. Kubovy, M
    (1988) Should we resist the seductiveness of the space:time::vision:audition analogy?Journal of Experimental Psychology: Human Perception and Performance, 14, 318–320. doi: 10.1037/0096‑1523.14.2.318
    https://doi.org/10.1037/0096-1523.14.2.318 [Google Scholar]
  49. Kuhl, P.K
    (2004) Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831–843. doi: 10.1038/nrn1533
    https://doi.org/10.1038/nrn1533 [Google Scholar]
  50. Kveraga, K. , Ghuman, A.S. , & Bar, M
    (2007) Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168. doi: 10.1016/j.bandc.2007.06.007
    https://doi.org/10.1016/j.bandc.2007.06.007 [Google Scholar]
  51. Lam, W.Y.K
    (2009) Examining the effects of metacognitive strategy instruction on ESL group discussions: A synthesis of approaches. Language Teaching Resesarch, 13(2), 129–150. doi: 10.1177/1362168809103445
    https://doi.org/10.1177/1362168809103445 [Google Scholar]
  52. Lashley, K.S
    (1951[2004]) The problem of serial order in behavior. First language acquisition: The essential readings, B. Lust & C. Foley (Eds.). Malden, MA: Blackwell.
    [Google Scholar]
  53. Leclercq, A. , & Majerus, S
    (2010) Serial order short term memory predicts vocabulary development: Evidence from a longitudinal study. Developmental Psychology, 46(2), 417–427. doi: 10.1037/a0018540
    https://doi.org/10.1037/a0018540 [Google Scholar]
  54. Manza, L. , & Reber, A.S
    (1997) Representing artificial grammars: Transfer across stimulus forms and modalities. In D.C. Berry (Ed.), How implicit is implicit learning? (pp. 73–106). New York, NY: Oxford University Press. doi: 10.1093/acprof:oso/9780198523512.003.0004
    https://doi.org/10.1093/acprof:oso/9780198523512.003.0004 [Google Scholar]
  55. Mecklenbräuker, S. , Hupbach, A. , & Wippich, W
    (2003) Age-related improvements in a conceptual implicit memory test. Memory, 1208–1217. doi: 10.3758/BF03195804
    https://doi.org/10.3758/BF03195804 [Google Scholar]
  56. Misyak, J.B. , & Christiansen, M.H
    (2012) Statistical learning and language: An individual differences study. Language Learning, 62, 302–331. doi: 10.1111/j.1467‑9922.2010.00626.x
    https://doi.org/10.1111/j.1467-9922.2010.00626.x [Google Scholar]
  57. Newport, E.L
    (1990) Maturational constraints on language learning. Cognitive Science, 14, 11–28. doi: 10.1207/s15516709cog1401_2
    https://doi.org/10.1207/s15516709cog1401_2 [Google Scholar]
  58. Perruchet, P. , & Vinter, A
    (1998) Parser: A model for word segmentation. Journal of Memory and Language, 39, 246–263. doi: 10.1006/jmla.1998.2576
    https://doi.org/10.1006/jmla.1998.2576 [Google Scholar]
  59. Poletiek, F.H. , Conway, C.M. , Ellefson, M.R. , & Christiansen, M.H
    . (under review). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Journal of Experimental Psychology: General.
    [Google Scholar]
  60. Reber, A.S
    (1989) Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118(3), 219–235. doi: 10.1037/0096‑3445.118.3.219
    https://doi.org/10.1037/0096-3445.118.3.219 [Google Scholar]
  61. (1967) Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 77, 317–327.
    [Google Scholar]
  62. (1993) Implicit learning and tacit knowledge: An essay on the cognitive unconscious. Oxford: Oxford University Press.
    [Google Scholar]
  63. Rosenbaum, D.A. , Cohen, R.G. , Jax, S.A. , Weiss, D.J. , & van der Wel, R
    (2007) The problem of serial order in behavior: Lashley’s legacy. Human Movement Science, 26, 525–554. doi: 10.1016/j.humov.2007.04.001
    https://doi.org/10.1016/j.humov.2007.04.001 [Google Scholar]
  64. Rüsseler, J. , & Roesler, F
    (2000) Implicit and explicit learning of event sequences: Evidence for distinct coding of perceptual and motor representations. Acta Psychologica, 104, 45–67. doi: 10.1016/S0001‑6918(99)00053‑0
    https://doi.org/10.1016/S0001-6918(99)00053-0 [Google Scholar]
  65. Saffran, J.R
    (2001) The use of predictive dependencies in language learning. Journal of Memory and Language, 44, 493–515. doi: 10.1006/jmla.2000.2759
    https://doi.org/10.1006/jmla.2000.2759 [Google Scholar]
  66. (2002) Constraints on language learning. Journal of Memory and Language, 47(1), 172–196. doi: 10.1006/jmla.2001.2839
    https://doi.org/10.1006/jmla.2001.2839 [Google Scholar]
  67. Saffran, J.R. , Aslin, R.N. , & Newport, E.L
    (1996) Statistical learning by 8-month-old infants. Science, 274, 1926–1928. doi: 10.1126/science.274.5294.1926
    https://doi.org/10.1126/science.274.5294.1926 [Google Scholar]
  68. Saffran, J.R. , Johnson, E.K. , Aslin, R.N. & Newport, E.L
    (1999) Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52. doi: 10.1016/S0010‑0277(98)00075‑4
    https://doi.org/10.1016/S0010-0277(98)00075-4 [Google Scholar]
  69. Schlaghecken, F. , Stuermer, B. , & Eimer, M
    (2000) Chunking processes in the learning of event sequences: Electrophysiological indicators. Memory & Cogniton, 28(5), 821–831. doi: 10.3758/BF03198417
    https://doi.org/10.3758/BF03198417 [Google Scholar]
  70. Schmidt, R.W
    (1990) The role of consciousness in second language acquisition. Applied Linguistics, 11(2), 129–158. doi: 10.1093/applin/11.2.129
    https://doi.org/10.1093/applin/11.2.129 [Google Scholar]
  71. Shamma, S
    (2001) On the role of space and time in auditory processing. Trends in Cognitive Sciences, 5, 340–348. doi: 10.1016/S1364‑6613(00)01704‑6
    https://doi.org/10.1016/S1364-6613(00)01704-6 [Google Scholar]
  72. Sharon, T. , & Wynn, K
    (1998) Individuation of action from continuous motion. Psychological Science, 9, 357–362. doi: 10.1111/1467‑9280.00068
    https://doi.org/10.1111/1467-9280.00068 [Google Scholar]
  73. Robinson, C.W. , & Sloutsky, V.M
    (2007) Visual statistical learning: Getting some help from the auditory modality. In D.S. McNamara & J.G. Trafton (Eds.), Proceedings of the 29th Annual Cognitive Science Society (pp. 611–616). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  74. Robinson, P
    (1997) Learning simple and complex second language rules under implicit, incidental, rule-search, and instructed conditions. Studies in Second Language Acquisition, 18(1), 27–67. doi: 10.1017/S0272263100014674
    https://doi.org/10.1017/S0272263100014674 [Google Scholar]
  75. Thomas, K. , Hunt, R. , Vizueta, N. , Sommer, T. , Durston, S. , Yang, Y. , & Worden, M.S
    (2004) Evidence of developmental differences in implicit sequence learning: An fMRI study of children and adults. Journal of Cognitive Neuroscience, 16, 1339–1351. doi: 10.1162/0898929042304688
    https://doi.org/10.1162/0898929042304688 [Google Scholar]
  76. Turk-Browne, N.B. , & Scholl, B.J
    (2009) Flexible visual statistical learning: Transfer across space and time. Journal of Experimental Psychology: Human Perception and Performance, 35, 195–202. doi: 10.1037/0096‑1523.35.1.195
    https://doi.org/10.1037/0096-1523.35.1.195 [Google Scholar]
  77. Turk-Browne, N.B. , Scholl, B.J. , Chun, M.M. , & Johnson, M.K
    (2009) Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934–1945. doi: 10.1162/jocn.2009.21131
    https://doi.org/10.1162/jocn.2009.21131 [Google Scholar]
  78. Walk, A.M. , & Conway, C.M
    (2011) Multisensory statistical learning: Can associations across perceptual categories be acquired?In L. Carlson , C. Hoelscher , & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3337–3342). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  79. Zacks, J.M. , Speer, N.K. , Vettel, J.M. , & Jacoby, L.L
    (2006) Event understanding and memory in healthy aging and dementia of the Alzheimer type. Psychology & Aging, 21, 466–482. doi: 10.1037/0882‑7974.21.3.466
    https://doi.org/10.1037/0882-7974.21.3.466 [Google Scholar]
  80. Zacks, J.M. , & Swallow, K.M
    (2007) Event segmentation. Current Directions in Psychological Science, 16(2), 80–84. doi: 10.1111/j.1467‑8721.2007.00480.x
    https://doi.org/10.1111/j.1467-8721.2007.00480.x [Google Scholar]
/content/books/9789027268723-sibil.48.09wal
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9789027268723
Book
false
Loading
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error