1887

Future Robots

Towards a robotic science of human beings

image of Future Robots

This book is for both robot builders and scientists who study human behaviour and human societies. Scientists do not only collect empirical data but they also formulate theories to explain the data. Theories of human behaviour and human societies are traditionally expressed in words but, today, with the advent of the computer they can also be expressed by constructing computer-based artefacts. If the artefacts do what human beings do, the theory/blueprint that has been used to construct the artefacts explains human behaviour and human societies. Since human beings are primarily bodies, the artefacts must be robots, and human robots must progressively reproduce all we know about human beings and their societies. And, although they are purely scientific tools, they can have one very important practical application: helping human beings to better understand the many difficult problems they face today and will face in the future - and, perhaps, to find solutions for these problems.

References

  1. Parisi, D ., Cecconi, F . & Nolfi, S.
    (1990) Econets: Neural networks that learn in an environment. Network, 1, 149–168. doi: 10.1088/0954‑898X/1/2/003
    https://doi.org/10.1088/0954-898X/1/2/003 [Google Scholar]
  2. Nolfi, S . & Parisi, D.
    (1993) Self-selection of input stimuli for improving performance. In G. A. Bekey (Ed.), Neural networks and robotics (pp. 403–418). Berlin: Kluwer. doi: 10.1007/978‑1‑4615‑3180‑7_23
    https://doi.org/10.1007/ 978-1-4615-3180-7_23 [Google Scholar]
  3. Parisi, D.
    (1994) Are neural networks necessarily passive receivers of input? In F. Masulli , P. G. Morasso & A. Schenone (Eds.), Neural networks in biomedicine (pp. 113–124). Singapore: World Scientific.
    [Google Scholar]
  4. Parisi, D . & Cecconi, F.
    (1995) Learning in the active mode. In F. Moràn , A. Moreno , J. J. Merelo & P. Chacòn (Eds.), Advances in artificial life. Third European Conference on Artificial Life (pp. 439–462). London: Springer.
    [Google Scholar]
  5. Menczer, F . & Belew, R. K.
    (1996) From complex environments to complex behaviours. Adaptive Behaviour, 4, 317–363. doi: 10.1177/105971239600400305
    https://doi.org/10.1177/105971239600400305 [Google Scholar]
  6. Parisi, D.
    (1997) Active sampling in evolving neural networks. Human Development, 40, 320–324. doi: 10.1159/000278734
    https://doi.org/10.1159/000278734 [Google Scholar]
  7. Duchon, A. P ., Kaelbling, L. P . & Warren, W. H.
    (1998) Ecological robotics. Adaptive Behaviour, 6, 473–507. doi: 10.1177/105971239800600306
    https://doi.org/10.1177/105971239800600306 [Google Scholar]
  8. Arkin, R. C ., Cervantes-Perez, F . & Weitzenfeld, A.
    (1998) Ecological robotics: A schema-theoretic­ approach. In R. C. Bolles , H. Bunke & H. Noltemeier (Eds.), Intelligent robots: Sensing, modelling and planning (pp.377–393). Singapore: World Scientific.
    [Google Scholar]
  9. Ikegami, T.
    (2009) Rehabilitating biology as a natural history. Adaptive Behaviour, 17, 325–328. doi: 10.1177/1059712309340855
    https://doi.org/10.1177/1059712309340855 [Google Scholar]
  10. Nolfi, S . & Parisi, D.
    (1999) Exploiting the power of sensory-motor coordination. In D. Floreano , J-D. Nicoud , & F. Mondada (Eds.), Artificial Life 1 (pp. 173–182). London: Springer. doi: 10.1007/3‑540‑48304‑7_24
    https://doi.org/10.1007/3-540-48304-7_24 [Google Scholar]
  11. Schlesinger, M ., Parisi, D . & Langer, J.
    (2000) Learning to reach by constraining the movement search space. Developmental Science, 3, 67–80. doi: 10.1111/1467‑7687.00101
    https://doi.org/10.1111/1467-7687.00101 [Google Scholar]
  12. Borghi, A. M ., Di Ferdinando, A ., & Parisi, D.
    (2002) The role of perception and action in object categorization. In J. A. Bullinaria & W. Lowe (Eds.), Connectionist models of cognition and perception (pp. 40–50). Singapore: World Scientific.
    [Google Scholar]
  13. Di Ferdinando, A . & Parisi, D.
    (2005) Internal representations of sensory input reflect the motor output with which organisms respond to sensory input. In A. Carsetti (Ed.), Seeing and thinking (pp. 58–63). Berlin: Kluwer.
    [Google Scholar]
  14. Caligiore, D ., Borghi, A. M ., Parisi, D . & Baldassarre, G.
    (2010) TRoPICALS: A computational embodied neuroscience model of experiments on compatibility effects. Psychological Review, 117, 1188–1228. doi: 10.1037/a0020887
    https://doi.org/10.1037/a0020887 [Google Scholar]
  15. Steels, L.
    (1994) The artificial life roots of artificial intelligence. Artificial Life, 1, 75–110. doi: 10.1162/artl.1993.1.1_2.75
    https://doi.org/10.1162/artl.1993.1.1_2.75 [Google Scholar]
  16. Chiel, H . & Beer, R.
    (1997) The brain has a body: Adaptive behaviours emerge from interactions of brain, body, and environment. Trends in Neurosciences, 20, 553–557. doi: 10.1016/S0166‑2236(97)01149‑1
    https://doi.org/10.1016/S0166-2236(97)01149-1 [Google Scholar]
  17. Metta, G . & Fitzpatrick, P.
    (2003) Better vision through manipulation. Adaptive Behaviour, 11, 109–128. doi: 10.1177/10597123030112004
    https://doi.org/10.1177/10597123030112004 [Google Scholar]
  18. Chemero, A . & Turvey, M. T.
    (2007) Gibsonian affordances for roboticists. Adaptive Behaviour, 15, 473–480. doi: 10.1177/1059712307085098
    https://doi.org/10.1177/1059712307085098 [Google Scholar]
  19. Pfeifer, R. & Bongard, J. C.
    (2007) How the body shapes the way we think. Cambridge, MA: MIT Press.
    [Google Scholar]
  20. Cecconi, F . & Parisi, D.
    (1991) Evolving organisms that can reach for objects. In J. A. Meyer & S. W. Wilson (Eds.), From animals to animals 1 (pp. 391–399). Cambridge, MA: MIT Press.
    [Google Scholar]
  21. Parisi, D ., Nolfi, S . & Cecconi, F.
    (1992) Learning, behaviour, and evolution. In F. Varela & 
P. Bourgine (Eds.), Toward a practice of autonomous systems (pp. 207–216). Cambridge, MA: MIT Press.
    [Google Scholar]
  22. Nolfi, S ., Elman, J. L. & Parisi, D.
    (1994) Learning and evolution in neural networks. Adaptive Behaviour, 3, 5–28. doi: 10.1177/105971239400300102
    https://doi.org/10.1177/105971239400300102 [Google Scholar]
  23. Lund, H. H . & Parisi, D.
    (1995) Pre-adaptation in populations of neural networks evolving in a changing environment. Artificial Life, 2, 179–197. doi: 10.1162/artl.1995.2.2.179
    https://doi.org/10.1162/artl.1995.2.2.179 [Google Scholar]
  24. Parisi, D . & Nolfi, S.
    (1996) The influence of learning on evolution. In R. K. Belew & 
M. Mitchell­ (Eds.), Adaptive individuals in evolving populations (pp. 419–428). Readings, MA: Addison-Wesley.
    [Google Scholar]
  25. Miglino, O ., Nolfi, S . & Parisi, D.
    (1996) Discontinuity in evolution: How different levels of organization imply pre-adaptation. In R. K. Belew & M. Mitchell (Eds.), Adaptive individuals in evolving populations (pp. 399–415). Readings, MA: Addison-Wesley.
    [Google Scholar]
  26. Elman, J. L ., Bates, E. A ., Johnson, M. H ., Karmiloff-Smith, A ., Parisi, D . & Plunkett, K.
    (1996) Rethinking innateness. A connectionist perspective on development. Cambridge, MA: MIT Press.
    [Google Scholar]
  27. Nolfi, S . & Parisi, D.
    (1997) Learning to adapt to changing environments in evolving neural networks. Adaptive Behaviour, 5, 75–98. doi: 10.1177/105971239600500104
    https://doi.org/10.1177/105971239600500104 [Google Scholar]
  28. Nolfi, S.
    (2000) How learning and evolution interact: The case of a learning task which differs from the evolutionary task. Adaptive Behaviour, 7, 231–236. doi: 10.1177/105971239900700205
    https://doi.org/10.1177/105971239900700205 [Google Scholar]
  29. Nolfi, S . & Floreano, D.
    (2000) Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.
    [Google Scholar]
  30. Calabretta, R ., Nolfi, S ., Parisi, D . & Wagner, G. P.
    (2000) Duplication of modules facilitates the evolution of functional specialization. Artificial Life, 6, 69–84. doi: 10.1162/106454600568320
    https://doi.org/10.1162/106454600568320 [Google Scholar]
  31. Di Ferdinando, A ., Calabretta, R ., & Parisi, D.
    (2001) Evolving modular architectures for neural networks. In R. French & J. Sougné (Eds.), Proceedings of the sixth neural computation and psychology workshop: Evolution, learning, and development (pp. 253–262). London: Springer.
    [Google Scholar]
  32. Parisi, D.
    (2003) Evolutionary psychology and Artificial Life In S. J. Scher & F. Rauscher (Eds.), Evolutionary psychology: Alternative approaches (pp. 243–265). London: Springer. doi: 10.1007/978‑1‑4615‑0267‑8_12
    https://doi.org/10.1007/978-1-4615-0267-8_12 [Google Scholar]
  33. Calabretta, R . & Parisi, D.
    (2005) Evolutionary connectionism and mind/brain modularity. In W. Callabaut & D. Rasskin-Gutman (Eds.), Modularity. Understanding the development and evolution of complex natural systems (pp. 309–330). Cambridge, MA: MIT Press.
    [Google Scholar]
  34. Floreano, D ., Dürr, P . & Mattiussi, C.
    (2008) Neuroevolution: from architectures to learning. Evolutionary Intelligence, 1, 47–62. doi: 10.1007/s12065‑007‑0002‑4
    https://doi.org/10.1007/s12065-007-0002-4 [Google Scholar]
  35. Ackley, D. H. & Littman, M. L.
    (1992) Interactions between learning and evolution. In Langton, C ., Farmer, J ., Rasmussen, S . & Taylor, C. (Eds.), Artificial Life 2 (pp. 487–510). Redwood City, CA: Addison-Wesley.
    [Google Scholar]
  36. Cliff, D ., Husbands, P . & Harvey, I.
    (1993) Explorations in evolutionary robotics. Adaptive Behaviour, 2, 73–110. doi: 10.1177/105971239300200104
    https://doi.org/10.1177/105971239300200104 [Google Scholar]
  37. Harvey, I ., Di Paolo, E ., Wood, R. , Quinn, M . & Tuci, E.
    (2004) Evolutionary robotics: A new scientific tool to study cognition. Artificial Life, 11, 79–98. doi: 10.1162/1064546053278991
    https://doi.org/10.1162/1064546053278991 [Google Scholar]
  38. Cangelosi, A ., Parisi, D . & Nolfi, S.
    (1994) Cell division and migration in a ‘genotype’ for neural networks. Network, 5, 497–515. doi: 10.1088/0954‑898X/5/4/005
    https://doi.org/10.1088/0954-898X/5/4/005 [Google Scholar]
  39. Nolfi, S ., Miglino, O . & Parisi, D.
    (1994) Phenotypic plasticity in evolving neural networks. In D. P. Gaussier & J-D. Nicoud (Eds.), From perception to action (146–157). Los Alamitos, CA: IEEE Computer Society Press.
    [Google Scholar]
  40. Nolfi, S . & Parisi, D.
    (1995) Evolving artificial neural networks that develop in time. In F. Moran , A. Moreno , J. J. Merelo , & P. Chacòn (Eds.), Advances in Artificial Life. Proceedings of the third European conference on Artificial Life (pp. 353–367). London: Springer.
    [Google Scholar]
  41. Parisi, D.
    (1996) Computational models of developmental mechanisms. In R. Gelman & T. K. Au (Eds.), Perceptual and cognitive development (pp. 373–412). San Diego, CA: Academic Press.
    [Google Scholar]
  42. Parisi, D . & Nolfi, S.
    (2001) Development in neural networks. In J. P. Mukesh , V. Honavar & 
K. Balakrishan (Eds.), Advances in evolutionary synthesis of neural networks (pp. 215–246). Cambridge, MA: MIT Press.
    [Google Scholar]
  43. Schlesinger, M . & Parisi, D.
    (2001) The agent-based approach: A new direction for computational models of development. Developmental Review, 21, 121–146. doi: 10.1006/drev.2000.0520
    https://doi.org/10.1006/drev.2000.0520 [Google Scholar]
  44. Parisi, D . & Schlesinger, M.
    (2002) Artificial Life and Piaget. Cognitive Development, 17, 1301–1321. doi: 10.1016/S0885‑2014(02)00119‑3
    https://doi.org/10.1016/S0885-2014(02)00119-3 [Google Scholar]
  45. Cangelosi, A ., Nolfi, S . & Parisi, D.
    (2003) Artificial life models of neural development. In Kumar, S . & Bentley, P. J. (Eds.), On Growth, form, and computers (pp. 339–354). San Diego, CA: Academic Press.
    [Google Scholar]
  46. Schlesinger, M.
    (2003) A lesson from robotics: Modeling infants as autonomous agents. Adaptive Behavior, 11, 97–107. doi: 10.1177/10597123030112003
    https://doi.org/10.1177/10597123030112003 [Google Scholar]
  47. (2004) Evolving agents as a metaphor for the developing child. Developmental Science, 7, 158–164.
    [Google Scholar]
  48. Schlesinger, M ., & McMurray, B.
    (2012) The past, present, and future of computational models of cognitive development. Cognitive Development, 27, 326–348. doi: 10.1016/j.cogdev.2012.07.002
    https://doi.org/10.1016/j.cogdev.2012.07.002 [Google Scholar]
  49. Cangelosi, A . & Schlesinger, M.
    (2014) Developmental robotics: From babies to robots. ­Cambridge, MA: MIT Press.
    [Google Scholar]
  50. Cecconi, F . & Parisi, D.
    (1992) Neural networks with motivational units. In From Animals to Animats 2 (pp. 167–181). Cambridge, MA: MIT Press.
    [Google Scholar]
  51. Parisi, D.
    (1996) Motivation in artificial organisms. In G. Tascini , F. Esposito , V. Roberto & 
P. Zingaretti (Eds.), Machine learning and perception (pp. 3–19). Singapore: World Scientific.
    [Google Scholar]
  52. Mirolli, M . & Parisi, D.
    (2003) Artificial organisms that sleep. In W. Banzhaf , T. Christaller , 
P. Dittrich , J. T. Kim , & J. Ziegler (Eds.), Proceedings of the seventh European conference on Artificial Life (pp. 377–386). London: Springer.
    [Google Scholar]
  53. Parisi, D.
    (2004) Internal robotics. Connection Science, 16, 325–338. doi: 10.1080/09540090412331314768
    https://doi.org/10.1080/ 09540090412331314768 [Google Scholar]
  54. Ruini, F ., Petrosino, G ., Saglimbeni, F ., & Parisi, D.
    (2010) The strategic level and the tactical level of behaviour. In Gray, J . & Nefti-Meziani, S. (Eds.),Advances in Cognitive Systems (pp.  271–299). Herts, UK: IET Publisher. doi: 10.1049/PBCE071E_ch10
    https://doi.org/10.1049/PBCE071E_ch10 [Google Scholar]
  55. Parisi, D . & Petrosino, G.
    (2010) Robots that have emotions. Adaptive Behaviour, 18, 453–469. doi: 10.1177/1059712310388528
    https://doi.org/10.1177/1059712310388528 [Google Scholar]
  56. Saglimbeni, F ., & Parisi, D.
    (2011) Input from the external environment and input from within the body. In G. Kampis , I. Karsai , & E. Szathmáry (Eds.), Advances in Artificial Life. Darwin meets von Neumann (pp. 148–155). London: Springer. doi: 10.1007/978‑3‑642‑21283‑3_19
    https://doi.org/10.1007/978-3-642-21283-3_19 [Google Scholar]
  57. Parisi, D.
    (2011) The other half of the embodied mind. Frontiers in Psychology, 69, 1–8.
    [Google Scholar]
  58. Petrosino, G ., Parisi, D . & Nolfi, S.
    (2013) Selective attention enables action selection: Evidence from evolutionary robotics experiments. Adaptive Behaviour, 21, 356–370. doi: 10.1177/1059712313487389
    https://doi.org/10.1177/1059712313487389 [Google Scholar]
  59. Arbib, M. A. & Fellous, J. M.
    (2004) Emotions: From brain to robot. Trends in Cognitive Sciences, 8, 554–561. doi: 10.1016/j.tics.2004.10.004
    https://doi.org/10.1016/j.tics.2004.10.004 [Google Scholar]
  60. Ziemke, T.
    (2008) The role of emotions in biological and robotic autonomy. Biosystems, 91, 401–408. doi: 10.1016/j.biosystems.2007.05.015
    https://doi.org/10.1016/j.biosystems.2007.05.015 [Google Scholar]
  61. Cos, I ., Canamero, L . & Hayes, G.
    (2013) Learning affordances of consummatory behaviours: motivation-driven adaptation for motivated agents. Adapative Behaviour, 18, 285–314. doi: 10.1177/1059712310375471
    https://doi.org/10.1177/1059712310375471 [Google Scholar]
  62. Cos, I ., Canamero, L ., Hayes, G . & Gillies, A.
    (2013) Hedonic value: enhancing adaptation for motivated agents. Adaptive Behaviour, 21, 465–483. doi: 10.1177/1059712313486817
    https://doi.org/10.1177/1059712313486817 [Google Scholar]
  63. Parisi, D.
    (1997) An artificial life approach to language. Brain and Language, 59, 121–146. doi: 10.1006/brln.1997.1815
    https://doi.org/10.1006/brln.1997.1815 [Google Scholar]
  64. Cangelosi, A . & Parisi, D.
    (1998) The emergence of a ‘language’ in an evolving population of neural networks. Connection Science, 10, 83–97. doi: 10.1080/095400998116512
    https://doi.org/10.1080/095400998116512 [Google Scholar]
  65. Parisi, D . & Cangelosi, A.
    (2002) A unified simulation scenario for language development, evolution, and historical change. In A. Cangelosi & D. Parisi (Eds.), Simulating the evolution of language (pp. 255–275). London: Springer. doi: 10.1007/978‑1‑4471‑0663‑0_12
    https://doi.org/10.1007/978-1-4471-0663-0_12 [Google Scholar]
  66. Cangelosi, A ., & Parisi, D.
    (2004) The processing of verbs and nouns in neural networks: 
Insights from synthetic brain imaging. Brain and Language, 2, 401–408. doi: 10.1016/S0093‑934X(03)00353‑5
    https://doi.org/10.1016/S0093-934X(03)00353-5 [Google Scholar]
  67. Mirolli, M . & Parisi, D.
    (2004) Language, altruism, and docility: How cultural learning can favour language evolution. In J. B. Pollack , M. Bedau , P. Husbands , T. Ikegami & R. A. Watson (Eds.), Artificial Life 9 (pp. 182–187). Cambridge, MA: MIT Press.
    [Google Scholar]
  68. (2005) How can we explain the emergence of a language that benefits the hearer but not the speaker? Connection Science, 17, 307–324. doi: 10.1080/09540090500177539
    https://doi.org/10.1080/ 09540090500177539 [Google Scholar]
  69. (2006) Talking to oneself as a selective pressure for the emergence of language. In A. Cangelosi , A. D. M. Smith & K. Smith (Eds.), Proceedings of the sixth international conference on the evolution of language (pp. 182–187). Singapore: World Scientific.
    [Google Scholar]
  70. Mirolli, M ., Cecconi, F ., & Parisi, D.
    (2007) A neural network model for explaining the asymmetries between linguistic production and linguistic comprehension. In S. Vosniadou , 
D. Kayser , & A. Protopapas (Eds.), Proceedings of the European Cognitive Science Conference 2007 (pp. 670–675). Hillsdale, NJ: Erlbaum.
    [Google Scholar]
  71. Floreano, D ., Mitri, S ., Magnenat, S . & Keller, L.
    (2007) Evolutionary conditions for the emergence of communication in robots. Current Biology, 17, 514–519. doi: 10.1016/j.cub.2007.01.058
    https://doi.org/10.1016/j.cub. 2007.01.058 [Google Scholar]
  72. Mirolli, M . & Parisi, D.
    (2008) How producer bias can favour the evolution of communication: an analysis of evolutionary dynamics. Adaptive Behaviour, 16, 27–52. doi: 10.1177/1059712307087597
    https://doi.org/10.1177/ 1059712307087597 [Google Scholar]
  73. Uno, R ., Marocco, D ., Nolfi, S . & Ikegami, T.
    (2011) Emergence of proto-sentences in artificial communicating systems. IEEE Transactions on Autonomous Mental Development, 3, 146–153. doi: 10.1109/TAMD.2011.2120608
    https://doi.org/10.1109/TAMD.2011.2120608 [Google Scholar]
  74. Steels, L.
    (2011) Modeling the cultural evolution of language. Physics of Life Reviews, 8, 339–356. doi: 10.1016/j.plrev.2011.10.014
    https://doi.org/10.1016/j.plrev.2011.10.014 [Google Scholar]
  75. Steels, L ., & Loetzsch, M.
    (2012) The Grounded Naming Game. In L. Steels (Ed.), Experiments in cultural language evolution. Amsterdam: John Benjamins. doi: 10.1075/ais.3
    https://doi.org/10.1075/ais.3 [Google Scholar]
  76. Yuruten, O ., Sahin, E . & Kalkan, S..
    (2013) The learning of adjectives and nouns from affordances and appearance features. Adaptive Behaviour, 21, 437–451. doi: 10.1177/1059712313497976
    https://doi.org/10.1177/1059712313497976 [Google Scholar]
  77. Cangelosi, A . & Harnad, S.
    (2000) The adaptive advantage of symbolic theft over sensorimotor toil: grounding language in perceptual categories. Evolution of Communication, 4, 117–142. doi: 10.1075/eoc.4.1.07can
    https://doi.org/10.1075/eoc.4.1.07can [Google Scholar]
  78. Cangelosi, A . & Parisi, D.
    (2001) How nouns and verbs differentially affect the behavior of artificial organisms. In J. D. Moore & K. Stenning (Eds.), Proceedings of the 23rd annual conference of the Cognitive Science Society (pp. 170–175). Hillsdale, NJ: Erlbaum.
    [Google Scholar]
  79. Mirolli, M . & Parisi, D.
    (2005) Language as an aid to categorization: A neural network model of early language acquisition. In A. Cangelosi , G. Bugmann & R. Borisyuk (Eds.), Modelling language, cognition and action. Proceedings of the ninth neural computation and psychology workshop (pp. 97–106). Singapore: World Scientific.
    [Google Scholar]
  80. (2009) Language as a cognitive tool. Minds and Machines, 19, 517–528. doi: 10.1007/s11023‑009‑9174‑2
    https://doi.org/10.1007/s11023-009-9174-2 [Google Scholar]
  81. Massera, G ., Tuci, E ., Ferrauto, T . & Nolfi, S.
    (2010) The facilitatory role of linguistic instructions on developing manipulation skills. IEEE Computational Intelligence Magazine, 5, 33–42. doi: 10.1109/MCI.2010.937321
    https://doi.org/10.1109/MCI.2010.937321 [Google Scholar]
  82. Mirolli, M . & Parisi, D.
    (2011) Towards a Vygotskian cognitive robotics: The role of language as a cognitive tool. New Ideas in Psychology, 29, 298–311. doi: 10.1016/j.newideapsych.2009.07.001
    https://doi.org/10.1016/j.newideapsych. 2009.07.001 [Google Scholar]
  83. Cecconi, F . & Parisi, D.
    (1990) Learning to predict the consequences of one’s own actions. In R. Eckmiller , G. Hartmann & G. Hauske (Eds.), Parallel processing in neural systems and computers (pp. 237–240). Amsterdam: Elsevier.
    [Google Scholar]
  84. Caligiore, D ., Tria, M ., & Parisi, D.
    (2006) Some adaptive advantages of the ability to make predictions. In From Animals to Animats 9 (pp. 17–28). London: Springer. doi: 10.1007/11840541_2
    https://doi.org/10.1007/ 11840541_2 [Google Scholar]
  85. Parisi, D.
    (2007) Mental robotics. In Chella, A . & Manzotti, R. (Eds.)Artificial Consciousness (pp. 191–211). Exeter, UK: Imprint-Academic.
    [Google Scholar]
  86. Cecconi, F ., Denaro, D ., Parisi, D . & Piazzalunga, U.
    (1994) Social aggregations in evolving neural networks. In C. Castelfranchi & E. Werner (Eds.), Artificial social systems (pp. 41–54). London: Springer. doi: 10.1007/3‑540‑58266‑5_3
    https://doi.org/10.1007/3-540-58266-5_3 [Google Scholar]
  87. Baldassarre, G ., Nolfi, S . & Parisi, D.
    (2003) Evolving mobile robots able to display collective behavior. Artificial Life, 9, 255–267. doi: 10.1162/106454603322392460
    https://doi.org/10.1162/106454603322392460 [Google Scholar]
  88. Radicchi, F ., Castellano, C ., Cecconi, F ., Loreto, V ., & Parisi, D.
    (2004) Defining and identifying communities in networks. Proceedings of the National Academy of Science, 101, 2658–2663. doi: 10.1073/pnas.0400054101
    https://doi.org/10.1073/pnas.0400054101 [Google Scholar]
  89. Castellano, C ., Cecconi, C ., Loreto, V ., Parisi, D . & Radicchi, F.
    (2004) Self-contained algorithms to detect communities in networks. Eur. Phys. J. B., 38, 311–319. doi: 10.1140/epjb/e2004‑00123‑0
    https://doi.org/10.1140/epjb/e2004-00123-0 [Google Scholar]
  90. Parisi, D . & Nolfi, S.
    (2006) Sociality in embodied neural agents. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 328–354). ­Cambridge: Cambridge University Press.
    [Google Scholar]
  91. Baldassarre, G ., Parisi, D . & Nolfi, S.
    (2006) Distributed coordination of simulated robots based on self-organisation. Artificial Life, 12, 289–311. doi: 10.1162/artl.2006.12.3.289
    https://doi.org/10.1162/artl.2006.12.3.289 [Google Scholar]
  92. Mitri, S ., Wischmann, S ., Floreano, D . & Keller, L.
    (2012) Using robots to understand social behavior. Biological Reviews, 88, 31–39. doi: 10.1111/j.1469‑185X.2012.00236.x
    https://doi.org/10.1111/j.1469-185X.2012.00236.x [Google Scholar]
  93. Nolfi, S.
    (2012) Co-evolving predator and prey robots. Adaptive Behavior, 20, 10–15. doi: 10.1177/1059712311426912
    https://doi.org/10.1177/1059712311426912 [Google Scholar]
  94. Lettieri, N . & Parisi, D.
    (2013) Neminem laedere: An evolutionary agent-based model of the interplay between punishment and damaging behaviour. Artificial Intelligence and Law, 21, 425–453. doi: 10.1007/s10506‑013‑9146‑y
    https://doi.org/10.1007/s10506-013-9146-y [Google Scholar]
  95. Bonabeau, E ., Dorigo, M . & Theraulaz, G.
    (Eds) (1999) Swarm intelligence: From natural to artificial systems. Oxford: Oxford University Press.
    [Google Scholar]
  96. Fong, T ., Noubakhsh, I . & Dautenhahn, K.
    (2003) A review of socially interactive robots. Robotics and Autonomous Systems, 42, 143–166. doi: 10.1016/S0921‑8890(02)00372‑X
    https://doi.org/10.1016/S0921-8890(02)00372-X [Google Scholar]
  97. Epstein, J. K . & Axtell, R.
    (2006)  Generative social science . Social science from the bottom up. Princeton, NJ: Princeton University Press.
    [Google Scholar]
  98. Menczer, F . & Parisi, D.
    (1992) A model for the emergence of sex in evolving networks: Adaptive advantage or random drift? In F. Varela & P. Bourgine (Eds.), Towards a practice of autonomous systems (pp. 337–345). Cambridge, MA: MIT Press.
    [Google Scholar]
  99. Parisi, D ., Cecconi, F . & Cerini, A.
    (1995) Kin-directed altruism and attachment behaviour in an evolving population of neural networks. In N. Gilbert , & R. Conte (Eds.)Artificial societies: The computational simulation of social life (pp. 238–251). London: UCL Press.
    [Google Scholar]
  100. Pedone, R . & Parisi, D.
    (1997) In what kinds of social groups can “altruistic” behaviors evolve? In R. Conte , R. Hegselmann , & P. Terna (Eds.), Simulating social phenomena (pp. 195–201). London: Springer. doi: 10.1007/978‑3‑662‑03366‑1_16
    https://doi.org/10.1007/978-3-662-03366-1_16 [Google Scholar]
  101. Floreano, D ., Mitri, S ., Perez-Uribe, A . & Keller, L.
    (2008) Evolution of altruistic robots. Computational Intelligence: Research Frontiers, 232–248,LNCS 5050.
    [Google Scholar]
  102. Mitri, S ., Floreano, D . & Keller, L.
    (2011) Relatedness influences signal reliability in evolving robots. Proceedings of the Royal Society B, 278, 378–383. doi: 10.1098/rspb.2010.1407
    https://doi.org/10.1098/rspb.2010.1407 [Google Scholar]
  103. Da Rold, F ., Petrosino, G ., & Parisi D.
    (2011) Male and female robots. Adaptive Behaviour, 19, 317–334. doi: 10.1177/1059712311417737
    https://doi.org/10.1177/1059712311417737 [Google Scholar]
  104. Todd, P. M . & Miller, G. F.
    (1993) Parental guidance suggested: How parental imprinting evolves through sexual selection as an adaptive learning mechanism. Adaptive Behaviour, 2, 5–47. doi: 10.1177/105971239300200102
    https://doi.org/10.1177/105971239300200102 [Google Scholar]
  105. Cecconi, F ., Menczer, F . & Belew, R.
    (1995) Maturation and evolution of imitative learning in artificial organisms. Adaptive Behavior, 4, 29–50. doi: 10.1177/105971239500400103
    https://doi.org/10.1177/105971239500400103 [Google Scholar]
  106. Denaro, D . & Parisi, D.
    (1996) Cultural evolution in a population of neural networks. In 
M. Marinaro & R. Tagliaferri (Eds.), Neural nets (pp. 100–111). London: Springer.
    [Google Scholar]
  107. Parisi, D.
    (1997) Cultural evolution in neural networks. IEEE Expert, 12, 9–11. doi: 10.1109/64.608170
    https://doi.org/10.1109/ 64.608170 [Google Scholar]
  108. Ugolini, M . & Parisi, D.
    (1999) Simulating the evolution of artifacts. In D. Floreano , J.-D. Nicoud , & F. Mondada (Eds.), Advances in Artificial Life (pp. 489–498). London: Springer. doi: 10.1007/3‑540‑48304‑7_67
    https://doi.org/10.1007/3-540-48304-7_67 [Google Scholar]
  109. Parisi, D ., & Ugolini, M.
    (2002) Living in enclaves. Complexity, 7, 21–27. doi: 10.1002/cplx.10010
    https://doi.org/10.1002/cplx.10010 [Google Scholar]
  110. Parisi, D ., Cecconi, F ., & Natale, F.
    (2003) Cultural change in spatial environments: The role of cultural assimilation and internal changes in cultures. The Journal of Conflict Resolution, 47, 163–179. doi: 10.1177/0022002702251025
    https://doi.org/10.1177/0022002702251025 [Google Scholar]
  111. Acerbi, A . & Parisi, D.
    (2006) Cultural transmission between and within generations. Journal of Artificial Societies and Social Systems, 9 (1).
    [Google Scholar]
  112. Cecconi, F ., Antinucci, F ., Parisi, D ., & Natale, F.
    (2006) Simulating the expansion of farming and the differentiation of European languages. In B. Laks & D. Simeoni (Eds.), Origins and Evolution of Language (pp. 234–258). Oxford: Oxford University Press.
    [Google Scholar]
  113. Acerbi, A ., Ghirlanda, S . & Enquist, M.
    (2014) Regulatory traits: Cultural influences on cultural evolution. In S. Cagnoni , M. Mirolli & M. Villani (Eds.), Evolution, complexity, and Artificial Life (pp. 135–148). London: Springer. doi: 10.1007/978‑3‑642‑37577‑4_9
    https://doi.org/10.1007/978-3-642-37577-4_9 [Google Scholar]
  114. Curran, D . & O’Riordan, C.
    (2006) Increasing population diversity through cultural learning. Adaptive Behaviour, 14, 315–338. doi: 10.1177/1059712306072335
    https://doi.org/10.1177/1059712306072335 [Google Scholar]
  115. Nehaniv, C. L. & Dautenhahn, K.
    (2007) Imitation and social learning in robots, humans, and animals. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511489808
    https://doi.org/10.1017/CBO9780511489808 [Google Scholar]
  116. Parisi, D.
    (1997) What to do with a surplus. In R. Conte , R. Hegselmann , & P. Terna (Eds.), Simulating social phenomena (pp. 133–151). London: Springer. doi: 10.1007/978‑3‑662‑03366‑1_10
    https://doi.org/10.1007/978-3-662-03366-1_10 [Google Scholar]
  117. Cecconi, F . & Parisi, D.
    (1998) Individual versus social survival strategies. Journal of Artificial Societies and Social Simulation, 1(2).
    [Google Scholar]
  118. Parisi, D.
    (1998) A cellular automata model of the expansion of the Assyrian empire. In 
S. Bandini ­, R. Serra & F. S. Liverani (Eds.), Cellular Automata (pp. 194–200). London: Springer.
    [Google Scholar]
  119. Delre, S. A . & Parisi, D.
    (2007) Information and cooperation in a simulated labour market: 
A computational model of the evolution of workers and firms. In M. Salzano & D. Colander (Eds.), Complexity hints for economic policy (pp. 181–200). London: Springer.
    [Google Scholar]
  120. Gigliotta, O ., Miglino, O ., & Parisi, D.
    (2007) Groups of agents with a leader. Journal of Artificial Societies and Social Simulation, 10, 1–10.
    [Google Scholar]
  121. Cecconi, F ., di Gennaro, F ., Parisi, D . & Schiappelli, A.
    (in press) Simulating the emergence of proto-urban centres in Ancient Southern Etruria. In J. A. Barcelò (Ed.), Mathematics and Archaeology. Enfield, NH: Science Publishers.
    [Google Scholar]
/content/books/9789027270085
Loading
/content/books/9789027270085
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Chapter
10
5
Chapter
content/books/9789027270085
Book
false
Loading
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error