1887

Biomedical Natural Language Processing

image of Biomedical Natural Language Processing

Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

References

  1. Afantenos, S .; Karkaletsis, V .; and Stamatopoulos, P
    2005 Summarization from medical documents: a survey. Artificial Intelligence in Medicine33(2):157–177. doi: 10.1016/j.artmed.2004.07.017
    https://doi.org/10.1016/j.artmed.2004.07.017 [Google Scholar]
  2. Agarwal, S ., and Yu, H
    2009 Automatically classifying sentences in full-text biomedical articles into introduction, methods, results and discussion. Bioinformatics25(23):3174–3180. doi: 10.1093/bioinformatics/btp548
    https://doi.org/10.1093/bioinformatics/btp548 [Google Scholar]
  3. Ahlers, C. B .; Fiszman, M .; Demner-Fushman, D .; Lang, F.-M .; and Rindflesch, T. C
    2007 ­Extracting semantic predications from medline citations for pharmacogenomics. Pacific Symposium on Biocomputing12:209–220.
    [Google Scholar]
  4. AHRQ
    2002 Systems to rate the strength of scientific evidence. Technical Report No. 02-P0022, Agency for Healthcare Research and Quality.
    [Google Scholar]
  5. Alex, B .; Grover, C .; Haddow, B .; Kabadjov, M .; Klein, E .; Matthews, M .; Roebuck, S .; Tobin, R .; and Wang, X
    2008 Assisted curation: Does text mining really help? In Pac Symp Biocomput.
    [Google Scholar]
  6. Ando, R. K .; Dredze, M .; and Zhang, T
    2006 Trec 2005 genomics track experiments at ibm Watson. In Proceedings of TREC 2005 .
    [Google Scholar]
  7. Aronson, A. R ., and Lang, F.-M
    2010 An overview of MetaMap: historical perspective and recent advances. Journal of the American Medical Informatics Association (JAMIA)3(17):229–236.
    [Google Scholar]
  8. Aronson, A. R ., and Rindflesch, T. C
    1997 Query expansion using the umls Metathesaurus. In Proceedings of the 1997 Annual Symposium of the American Medical Informatics Association (AMIA 1997) , 485–489.
    [Google Scholar]
  9. Aronson, A. R .; Mork, J. G .; Gay, C. W .; Humphrey, S. M .; and Rogers, W. J
    2004 The nlm indexing initiative’s Medical Text Indexer. In Proceedings of the 11th World Congress on Medical Informatics (MEDINFO 2004) , 268–272.
    [Google Scholar]
  10. Aronson, A. R .; Demner-Fushman, D .; Humphrey, S. H .; Lin, J .; Liu, H .; Ruch, P .; Ruiz, M. E .; Smith, L. H .; Tanabe, L. K .; and Wilbur, W. J
    2005 Fusion of knowledge-intensive and statistical approaches for retrieving and annotating textual genomics documents. In ­Voorhees, E. M ., and Buckland, L. P ., eds., Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005) , November 2005, Gaithersburg, Maryland. National Institute of Standards and Technology, pp. 36–45.
    [Google Scholar]
  11. Aronson, A. R
    2001 Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program. In Proceeding of the 2001 Annual Symposium of the American Medical Informatics Association (AMIA 2001) , 17–21.
    [Google Scholar]
  12. Bada, M ., and Hunter, L
    2007 Enrichment of obo ontologies. Journal of Biomedical Informatics40:300–315. doi: 10.1016/j.jbi.2006.07.003
    https://doi.org/10.1016/j.jbi.2006.07.003 [Google Scholar]
  13. Bada, M .; Eckert, M .; Evans, D .; Garcia, K .; Shipley, K .; Sitnikov, D .; Baumgartner Jr., W. A .; Cohen, K. B .; Verspoor, K .; Blake, J. A .; and Hunter, L. E
    2012 Concept annotation in the craft corpus. BMC Bioinformatics13:161. doi: 10.1186/1471‑2105‑13‑161
    https://doi.org/10.1186/1471-2105-13-161 [Google Scholar]
  14. Baeza-Yates, R ., and Ribeiro-Neto, B
    1999Modern Information Retrieval. Addison Wesley Longman Publishing Co. Inc.
    [Google Scholar]
  15. Bathia, N .; Shah, N .; Rubin, D .; Chiang, A .; and Mussen, M
    2008 Comparing concept recognizers for ontology-based indexing: MGREP vs. MetaMap. Technical report, National Center for Biomedical Ontologies.
    [Google Scholar]
  16. Baumgartner Jr., W. A .; Lu, Z .; Johnson, H. L .; Caporaso, J. G .; Paquette, J .; Lindemann, A .; White, E. K .; Medvedeva, O .; Cohen, K. B .; and Hunter, L
    2008 Concept recognition for extracting protein interaction relations from biomedical text. Genome Biology9. doi: 10.1186/gb‑2008‑9‑s2‑s9
    https://doi.org/10.1186/gb-2008-9-s2-s9 [Google Scholar]
  17. Bekhuis, T ., and Demner-Fushman, D
    2010 Towards automating the initial screening phase of a systematic review. In Proceedings of the 13th World Congress on Medical and Health Informatics (MEDINFO 2010) .
    [Google Scholar]
  18. Biber, D .; Johansson, S .; Leech, G .; Conrad, S .; and Finegan, E
    1999Longman grammar of spoken and written English. Pearson.
    [Google Scholar]
  19. Blake, J. B
    1986 From Surgeon General’s bookshelf to National Library of Medicine: a brief history. Bulletin of the Medical Library Association74(4):318–324.
    [Google Scholar]
  20. Blaschke, C ., and Valencia, A
    2001 The potential use of SUISEKI as a protein interaction discovery tool. Genome Inform12:123–134.
    [Google Scholar]
  21. Blaschke, C .; Andrade, M. A .; Ouzounis, C .; and Valencia, A
    1999 Automatic extraction of biological information from scientific text: protein–protein interactions. In Intelligent Systems for Molecular Biology, 60–67.
    [Google Scholar]
  22. Bmj Clinical Evidence
    2010. Available from: clinicalevidence.bmj.com/. Accessed 2010.
    [Google Scholar]
  23. Booth, A ., and O’Rourke, A
    1997 The value of structured abstracts in information retrieval from medline. Health Libraries Review14(3):157–166. doi: 10.1046/j.1365‑2532.1997.1430157.x
    https://doi.org/10.1046/j.1365-2532.1997.1430157.x [Google Scholar]
  24. Browne, A. C .; Divita, G .; Aronson, A. R .; and McCray, A. T
    2003 Umls language and vocabulary tools. In Proceedings of the 2003 Annual Symposium of the American Medical Informatics Association (AMIA 2003) , 798.
    [Google Scholar]
  25. Bunescu, R .; Ge, R .; Kate, R. J .; Marcotte, E. M .; Mooney, R. J .; Ramani, A. K .; and Wong, Y. W
    2005 Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine33(2):139–155. doi: 10.1016/j.artmed.2004.07.016
    https://doi.org/10.1016/j.artmed.2004.07.016 [Google Scholar]
  26. Caporaso, J. G .; Baumgartner Jr., W. A .; Cohen, K. B .; Johnson, H. L .; Paquette, J .; and Hunter, L
    2005 Concept recognition and the TREC Genomics tasks. In The Fourteenth Text REtrieval Conference (TREC 2005) Proceedings .
    [Google Scholar]
  27. Caporaso, J. G .; Baumgartner Jr., W. A .; Randolph, D. A .; Cohen, K. B .; and Hunter, L
    2007 MutationFinder: A high-performance system for extracting point mutation mentions from text. Bioinformatics23:1862–1865. doi: 10.1093/bioinformatics/btm235
    https://doi.org/10.1093/bioinformatics/btm235 [Google Scholar]
  28. Card, S. K .; Mackinlay, J. D .; and Shneiderman, B
    ., eds 1999Readings in Information Visualization: Using Vision to Think. San Francisco, CA, USA: Morgan Kaufmann Publishers.
    [Google Scholar]
  29. Chang, G .; Roth, C. R .; Reyes, C. L .; Pornillos, O .; Chen, Y.-J .; and Chen, A. P
    2006 Letters: Retraction. Science314:1875. doi: 10.1126/science.314.5807.1875b
    https://doi.org/10.1126/science.314.5807.1875b [Google Scholar]
  30. Chapman, W. W .; Bridewell, W .; Hanbury, P .; Cooper, G. F .; and Buchanan, B. G
    2001 A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics24:301–310. doi: 10.1006/jbin.2001.1029
    https://doi.org/10.1006/jbin.2001.1029 [Google Scholar]
  31. Chatr-aryamontri, A .; Ceol, A .; Palazzi, L. M .; Nardelli, G .; Schneider, M. V .; Castagnoli, L .; and Cesareni, G
    2006 MINT: the Molecular INTeration database. Nucleic Acids Research35.
    [Google Scholar]
  32. Chen, L ., and Friedman, C
    2004 Extracting phenotypic information from the literature via natural language processing. Stud Health Technol Inform107(2):758–762.
    [Google Scholar]
  33. Chen, E. S .; Hripcsak, G .; Xu, H .; and Friedman, C
    2008 Automated acquisition of disease drug knowledge from biomedical and clinical documents: an initial study. Journal of the American Medical Informatics Association: JAMIA15(1):87–98. doi: 10.1197/jamia.M2401
    https://doi.org/10.1197/jamia.M2401 [Google Scholar]
  34. Chun, H.-W .; Tsuruoka, Y .; Kim, J.-D .; Shiba, R .; Nagata, N .; Hishiki, T .; and Tsujii, J
    2006 ­Automatic recognition of topic-classified relations between prostate cancer and genes using MEDLINE abstracts. BMC Bioinformatics7. doi: 10.1186/1471‑2105‑7‑S3‑S4
    https://doi.org/10.1186/1471-2105-7-S3-S4 [Google Scholar]
  35. Cimino, J. J .; Aguirre, A .; Johnson, S. B .; and Peng, P
    1993 Generic queries for meeting clinical information needs. Bulletin of the Medical Library Association81(2):195–206.
    [Google Scholar]
  36. Cohen, K. B ., and Hunter, L
    2006 A critical revew of PASBio’s argument structures for biomedical verbs. BMC Bioinformatics7(Suppl. 3). doi: 10.1186/1471‑2105‑7‑440
    https://doi.org/10.1186/1471-2105-7-440 [Google Scholar]
  37. Cohen, K. B .; Baumgartner Jr., W. A .; and Hunter, L
    2008 Software testing and the naturally occurring data assumption in natural language processing. In Software Engineering, Testing, and Quality Assurance for Natural Language Processing, 23–30. Columbus, Ohio: Association for Computational Linguistics. doi: 10.3115/1622110.1622116
    https://doi.org/10.3115/1622110.1622116 [Google Scholar]
  38. Cohen, K. B .; Dolbey, A .; Acquaah-Mensah, G .; and Hunter, L
    2002 Contrast and variability in gene names. In Natural language processing in the biomedical domain, 14–20. Association for Computational Linguistics. doi: 10.3115/1118149.1118152
    https://doi.org/10.3115/1118149.1118152 [Google Scholar]
  39. Cohen, K. B .; Tanabe, L .; Kinoshita, S .; and Hunter, L
    2004 A resource for constructing customized test suites for molecular biology entity identification systems. In HLT-NAACL 2004 Workshop: BioLINK 2004, Linking Biological Literature, Ontologies and Databases , 1–8. ­Association for Computational Linguistics.
    [Google Scholar]
  40. Cohen, K. B .; Fox, L .; Ogren, P .; and Hunter, L
    2005a Empirical data on corpus design and usage in biomedical natural language processing. In American Medical Informatics Association Symposium , 156–160. doi: 10.1007/b135955
    https://doi.org/10.1007/b135955 [Google Scholar]
  41. Cohen, K. B .; Fox, L .; Ogren, P. V .; and Hunter, L
    2005b Corpus design for biomedical natural language processing. In Proceedings of the ACL-ISMB workshop on linking biological literature, ontologies and databases , 38–45. Association for Computational Linguistics. doi: 10.3115/1641484.1641490
    https://doi.org/10.3115/1641484.1641490 [Google Scholar]
  42. Cohen, K. B .; Hunter, L .; and Palmer, M
    2014a Assessment of software testing and quality assurance in natural language processing applications and a linguistically inspired approach to improving it. EternalS 2013, Springer, Lecture Notes in Computer Science.
    [Google Scholar]
  43. Cohen, K. B .; Johnson, H. L .; Verspoor, K .; Roeder, C .; and Hunter, L. E
    2010 The structural and content aspects of abstracts versus bodies of full text journal articles are different. BMC Bioinformatics11(492). doi: 10.1186/1471‑2105‑11‑492
    https://doi.org/10.1186/1471-2105-11-492 [Google Scholar]
  44. Cohen, K. B .; Lanfranchi, A .; Corvey, W .; Baumgartner Jr., W. A .; Roeder, C .; Ogren, P. V .; Palmer, M .; and Hunter, L. E
    2010 Annotation of all coreference in biomedical text: Guideline selection and adaptation. In BioTxtM 2010: 2nd workshop on building and evaluating resources for biomedical text mining , 37–41.
    [Google Scholar]
  45. Cohen, K. B .; Roeder, C .; Baumgartner Jr., W. A .; Hunter, L .; and Verspoor, K
    2010. Test suite design for biomedical ontology concept recognition systems. In Proceedings of the Language Resources and Evaluation Conference .
    [Google Scholar]
  46. Cohen, K. B .; Christiansen, T .; and Hunter, L. E
    2011 Parenthetically speaking: Classifying the contents of parentheses for text mining. In Proceeding of the 2011 Annual Symposium of the American Medical Informatics Association (AMIA 2011) , 267–272.
    [Google Scholar]
  47. Cohen, K. B .; Verspoor, K .; Bada, M .; Palmer, M .; and Hunter, L. E
    2014 The Colorado Richly Annotated Full-Text Corpus (CRAFT). Multi-model annotation in the biomedical domain. In Ide, N . and Pustejovsky, J . Handbook of Linguistic Annotation. Springer.
    [Google Scholar]
  48. Collier, N .; Park, H. S .; Ogata, N .; Tateishi, Y .; Nobata, C .; Ohta, T .; Sekimizu, T .; Imai, H .; Ibushi, K .; and Tsujii, J
    1999 The genia project: corpus-based knowledge acquisition and information extraction from genome research papers. In Ninth Conference of the European Chapter of the Association for Computational Linguistics (EACL-99) , 271–272. doi: 10.3115/977035.977081
    https://doi.org/10.3115/977035.977081 [Google Scholar]
  49. Consortium, T. G. O
    2001 Creating the Gene Ontology resource: design and implementation. Genome Research11:1425–1433. doi: 10.1101/gr.180801
    https://doi.org/10.1101/gr.180801 [Google Scholar]
  50. Corbett, P .; Batchelor, C .; and Teufel, S
    2007 Annotation of chemical named entities In Biological, translational, and clinical language processing, 57–64. Prague, Czech Republic: Association for Computational Linguistics.
    [Google Scholar]
  51. Craven, M ., and Kumlien, J
    1999 Constructing biological knowledge bases by extracting information from text sources. In Intelligent Systems for Molecular Biology, 77–86.
    [Google Scholar]
  52. Czarnecki, J .; Nobeli, I .; Smith, A. M .; and Shepherd, A. J
    2012 A text-mining system for extracting metabolic reactions from full-text articles. BMC Bioinformatics13:172. doi: 10.1186/1471‑2105‑13‑172
    https://doi.org/10.1186/1471-2105-13-172 [Google Scholar]
  53. Damianos, L .; Day, D .; Hirschman, L .; Kozierok, R .; Mardis, S .; McEntee, T .; McHenry, C .; Miller, K .; Ponte, J .; Reeder, F .; van Guilder, L .; Wellner, B .; Wilson, G .; and Wohlever, S
    2002 Real users, real data, real problems: the MiTAP system for monitoring bio events. In Proceedings of BTR2002: unified science and technology for reducing biological threats and countering terrorism .
    [Google Scholar]
  54. Demner-Fushman, D ., and Lin, J
    2006a Answer extraction, semantic clustering, and extractive summarization for clinical question answering. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (COLING/ACL 2006) .
    [Google Scholar]
  55. 2006b Situated question answering in the clinical domain: Selecting the best drug treatment for diseases. In Proceedings of COLING/ACL 2006 Workshop on Task-Focused Summarization and Question Answering .
    [Google Scholar]
  56. 2007 Answering clinical questions with knowledge-based and statistical techniques. Computational Linguistics33(1):63–103. doi: 10.1162/coli.2007.33.1.63
    https://doi.org/10.1162/coli.2007.33.1.63 [Google Scholar]
  57. Demner-Fushman, D .; Mork, J. G .; Shooshan, S. E .; and Aronson, A. R
    2010 Umls content views appropriate for nlp processing of the biomedical literature vs. clinical text. Journal of biomedical informatics 43(4):587–594. doi: 10.1016/j.jbi.2010.02.005
    https://doi.org/10.1016/j.jbi.2010.02.005 [Google Scholar]
  58. Demner-Fushman, D .; Abhyankar, S .; Jimeno-Yepes, A .; Loane, R. F .; Rance, B .; Lang, F.-M .; Ide, N. C .; Apostolova, E .; and Aronson, A. R
    2011 A knowledge-based approach to medical records retrieval. In TREC.
    [Google Scholar]
  59. Demner-Fushman, D .; Chapman, W. W .; and McDonald, C. J
    2009 What can natural language processing do for clinical decision support?Journal of Biomedical Informatics 42(5):760–772. doi: 10.1016/j.jbi.2009.08.007
    https://doi.org/10.1016/j.jbi.2009.08.007 [Google Scholar]
  60. Denny, J. C .; Smithers, J. D .; Spickard, A .; and Miller, R. A
    2002 A new tool to identify key biomedical concepts in text documents, with special application to curriculum content. In Proceedings of the 1997 Annual Symposium of the American Medical Informatics Association (AMIA 1997) , 1007.
    [Google Scholar]
  61. Divoli, A .; Wooldridge, M .; and Hearst, M
    2010 Full text and figure display improves bioscience literature search. PLoS ONE5(4). doi: 10.1371/journal.pone.0009619
    https://doi.org/10.1371/journal.pone.0009619 [Google Scholar]
  62. Donaldson, I .; Martin, J .; de Bruijn, B .; Wolting, C .; Lay, V .; Tuekam, B .; Zhang, S .; Baskin, B .; Bader, G .; Michalickova, K .; Pawson, T .; and Hogue, C
    2003 PreBIND and Textomy–mining the biomedical literature for protein–protein interactions using a support vector machine. BMC Bioinformatics4(11). doi: 10.1186/1471‑2105‑4‑11
    https://doi.org/10.1186/1471-2105-4-11 [Google Scholar]
  63. Dowell, K .; McAndrews-Hill, M .; Hill, D .; Drabkin, H .; and Blake, J
    2009 Integrating text mining into the mgi biocuration workflow. DATABASE: The Journal of Biological Databases and Curation.
    [Google Scholar]
  64. Du, X.-J .; Bathgate, R. A .; Samuel, C. S .; Dart, A. M .; and Summers, R. J
    2010 Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol7(1):48–58. doi: 10.1038/nrcardio.2009.198
    https://doi.org/10.1038/nrcardio.2009.198 [Google Scholar]
  65. Ebell, M. H .; Siwek, J .; Weiss, B. D .; Woolf, S. H .; Susman, J .; Ewigman, B .; and Bowman, M
    2004 Strength of Recommendation Taxonomy (SORT): A patient-centered approach to grading evidence in the medical literature. The Journal of the American Board of Family Practice17(1):59–67. doi: 10.3122/jabfm.17.1.59
    https://doi.org/10.3122/jabfm.17.1.59 [Google Scholar]
  66. Elhadad, N .; Kan, M.-Y .; Klavans, J. L .; and McKeown, K. R
    2005 Customization in a unified framework for summarizing medical literature. Artificial Intelligence in Medicine33(2):179–198. doi: 10.1016/j.artmed.2004.07.018
    https://doi.org/10.1016/j.artmed.2004.07.018 [Google Scholar]
  67. Elhadad, N
    2006User-sensitive text summarization: Application to the medical domain. Ph.D. Dissertation, Columbia University.
    [Google Scholar]
  68. Ely, J. W .; Osheroff, J. A .; Gorman, P. N .; Ebell, M. H .; Chambliss, M. L .; Pifer, E. A .; and Stavri, P. Z
    2000 A taxonomy of generic clinical questions: classification study. BMJ321:429–432. doi: 10.1136/bmj.321.7258.429
    https://doi.org/10.1136/bmj.321.7258.429 [Google Scholar]
  69. Ely, J. W .; Osheroff, J. A .; Chambliss, M. L .; Ebell, M. H .; and Rosenbaum, M. E
    2005 Answering physicians’ clinical questions: Obstacles and potential solutions. Journal of the American Medical Informatics Association12(2):217–224. doi: 10.1197/jamia.M1608
    https://doi.org/10.1197/jamia.M1608 [Google Scholar]
  70. Exchange, P
    2010 Parkhurst exchange. Available from: www.parkhurstexchange.com/searchQA. Canadian monthly GP/FP journal, accessed 2010.
  71. Fang, H .; Murphy, K .; Jin, Y .; Kim, J .; and White, P
    2006 Human gene name normalization using text matching with automatically extracted synonym dictionaries. In Linking natural language processing and biology: towards deeper biological literature analysis, 41–48. Association for Computational Linguistics. doi: 10.3115/1567619.1567627
    https://doi.org/10.3115/1567619.1567627 [Google Scholar]
  72. Flaherty, R. J
    2004 A simple method for evaluating the clinical literature. Family Practice Management11(5):47–52.
    [Google Scholar]
  73. Florance, V
    1992 Medical knowledge for clinical problem solving: a structural analysis of clinical questions. Bulletin of the Medical Library Association80(2):140–149.
    [Google Scholar]
  74. Fox, E. A ., and Shaw, J. A
    1994 Combination of multiple searches. In Proceedings of the 2nd Text REtrieval Conference (TREC-2) , 243–252.
    [Google Scholar]
  75. Friedman, C .; Sager, N .; Chi, E. C .; Marsh, E .; Christenson, C .; and Lyman, M. S
    1983 Computer structuring of free-text patient data. In Proceedings of the Annual Symposium on Computer Application in Medical Care , 688–691.
    [Google Scholar]
  76. Friedman, C .; Alderson, P. O .; Austin, J. H .; Cimino, J. J .; and Johnson, S. B
    1994 A general natural-language text processor for clinical radiology. Jornal of the American Medical Informatics Association1(2):161–174. doi: 10.1136/jamia.1994.95236146
    https://doi.org/10.1136/jamia.1994.95236146 [Google Scholar]
  77. Friedman, C .; Liu, H .; Shagina, L .; Johnson, S .; and Hripcsak, G
    2001 Evaluating the umls as a source of lexical knowledge for medical language processing. In Proc. AMIA Annual Symposium , 189–193.
    [Google Scholar]
  78. Friedman, C
    2005Semantic text parsing for patient records. New York: Springer. Chapter 15, 423–448. Hsinchun Chen and Sherrilynne S. Fuller and Carol Friedman and William Hersh .
    [Google Scholar]
  79. Fukuda, K .; Tamura, A .; Tsunoda, T .; and Takagi, T
    1998 Toward information extraction: identifying protein names from biological papers. In Pac Symp Biocomput , 707–718.
    [Google Scholar]
  80. Gabow, A .; Leach, S. M .; Baumgartner Jr., W. A .; Hunter, L. E .; and Goldberg, D. S
    2008 Improving protein function prediction methods with integrated literature data. BMC Bioinformatics9(198). doi: 10.1186/1471‑2105‑9‑198
    https://doi.org/10.1186/1471-2105-9-198 [Google Scholar]
  81. Gaizauskas, R .; Herring, P .; Oakes, M .; Beaulieu, M .; Willett, P .; Fowkes, H .; and Jonsson, A
    2001 Intelligent access to text: integrating information extraction technology into text browsers. In Proceedings of the human language technology conference (HLT 2001) , 189–193.
    [Google Scholar]
  82. Gao, Q ., and Vogel, S
    2008 Parallel implementations of word alignment tool. In Software Engineering, Testing, and Quality Assurance for Natural Language Processing, 49–57. Columbus, Ohio: Association for Computational Linguistics. doi: 10.3115/1622110.1622119
    https://doi.org/10.3115/1622110.1622119 [Google Scholar]
  83. Garten, Y ., and Altman, R. B
    2009 Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text. BMC BioinformaticsSuppl 2(10):S6. doi: 10.1186/1471‑2105‑10‑S2‑S6
    https://doi.org/10.1186/1471-2105-10-S2-S6 [Google Scholar]
  84. Gasperin, C .; Karamanis, N .; and Seal, R
    2007 Annotation of anaphoric relations in biomedical full-text articles using a domain-relevant scheme. In Proceedings of DAARC 2007 .
    [Google Scholar]
  85. Gasperin, C
    2006 Semi-supervised anaphora resolution in biomedical texts. In Linking natural language processing and biology: towards deeper biological literature analysis, 96–103. ­Association for Computational Linguistics. doi: 10.3115/1567619.1567640
    https://doi.org/10.3115/1567619.1567640 [Google Scholar]
  86. Guyatt, G. H .; Sackett, D .; and Cook, D. J
    1994 Users’ guides to the medical literature. ii. how to use an article about therapy or prevention. b. what were the results and will they help me in caring for my patients? evidence-based medicine working group. The Journal of the American Medical Association271(1):59–63. doi: 10.1001/jama.1994.03510250075039
    https://doi.org/10.1001/jama.1994.03510250075039 [Google Scholar]
  87. Hafner, C .; Baclawski, K .; Futrelle, R .; Fridman, N .; and Sampath, S
    1994 Creating a knowledge base of biological research papers. In 2nd International Conference on Intelligent Systems for Molecular Biology , 147–155.
    [Google Scholar]
  88. Hakenberg, J .; Plake, C .; Leaman, R .; Schroeder, M .; and Gonzalez, G
    2008 Inter-species normalization of gene mentions with GNAT. Bioinformatics24(216):126–132. doi: 10.1093/bioinformatics/btn299
    https://doi.org/10.1093/bioinformatics/btn299 [Google Scholar]
  89. Hakenberg, J .; Gerner, M .; Haeussler, M .; Solt, I .; Plake, C .; Schroeder, M .; Gonzalez, G .; ­Nenadic, G .; and Bergman, C. M
    2011 The gnat library for local and remote gene mention normalization. Bioinformatics27(19):2769–2771. doi: 10.1093/bioinformatics/btr455
    https://doi.org/10.1093/bioinformatics/btr455 [Google Scholar]
  90. Hanisch, D .; Fundel, K .; Mevissen, H.-T .; Zimmer, R .; and Fluck, J
    2005 ProMiner: rule-based protein and gene entity recognition. BMC Bioinformatics6 (Suppl. 1). doi: 10.1186/1471‑2105‑6‑S1‑S14
    https://doi.org/10.1186/1471-2105-6-S1-S14 [Google Scholar]
  91. Hatzivassiloglou, V .; Duboué, P. A .; and Rzhetsky, A
    2001 Disambiguating proteins, genes, and RNA in text: a machine learning approach. Bioinformatics17:S97–S106. doi: 10.1093/bioinformatics/17.suppl_1.S97
    https://doi.org/10.1093/bioinformatics/17.suppl_1.S97 [Google Scholar]
  92. Haynes, R. B .; Wilczynski, N .; McKibbon, K. A .; Walker, C. J .; and Sinclair, J. C
    1994 Developing optimal search strategies for detecting clinically sound studies in MEDLINE. Journal of the American Medical Informatics Association1(6):447–458. doi: 10.1136/jamia.1994.95153434
    https://doi.org/10.1136/jamia.1994.95153434 [Google Scholar]
  93. Hearst, M .; Divoli, A .; Buturu, H .; Ksikes, A .; Nakov, P .; and Wooldridge, M
    2007 BioText search engine: beyond abstract search. Bioinformatics23(16):2196–2197. doi: 10.1093/bioinformatics/btm301
    https://doi.org/10.1093/bioinformatics/btm301 [Google Scholar]
  94. Hearst, M .; Divoli, A .; Jerry, Y .; and Wooldridge, M
    2007 Exploring the efficacy of caption search for bioscience journal search interfaces. In Biological, translational, and clinical language processing, 73–80. Prague, Czech Republic: Association for Computational Linguistics.
    [Google Scholar]
  95. Hearst, M. A
    1992 Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th Conference on Computational Linguistics – Volume 2, 539–545. Morristown, NJ, USA: Association for Computational Linguistics.
    [Google Scholar]
  96. 2009Search user interfaces. Cambridge University Press. doi: 10.1017/CBO9781139644082
    https://doi.org/10.1017/CBO9781139644082 [Google Scholar]
  97. Hersh, W. R ., and Greenes, R. A
    1990 Saphire – an information retrieval system featuring concept matching, automatic indexing, probabilistic retrieval, and hierarchical relationships. Computers and biomedical research, an international journal23(5):410–425. doi: 10.1016/0010‑4809(90)90031‑7
    https://doi.org/10.1016/0010-4809(90)90031-7 [Google Scholar]
  98. Hersh, W. R ., and Voorhees, E. M
    2009 TREC genomics special issue overview. Information Retrieval12(1):1–15. doi: 10.1007/s10791‑008‑9076‑6
    https://doi.org/10.1007/s10791-008-9076-6 [Google Scholar]
  99. Hersh, W. R .; Hickam, D. H .; Haynes, R. B .; and McKibbon, K. A
    1994 A performance and failure analysis of saphire with a medline test collection. Journal of the American Medical Informatics Association1(1):51–60. doi: 10.1136/jamia.1994.95236136
    https://doi.org/10.1136/jamia.1994.95236136 [Google Scholar]
  100. Herskovic, J. R .; Tanaka, L. Y .; Hersh, W .; and Bernstam, E. V
    2007 A day in the life of PubMed: analysis of a typical day’s query log. Journal of the American Medical Informatics Association14:212–220. doi: 10.1197/jamia.M2191
    https://doi.org/10.1197/jamia.M2191 [Google Scholar]
  101. Hoffmann, R ., and Valencia, A
    2004 A gene network for navigating the literature. Nature Genetics36(7):664. doi: 10.1038/ng0704‑664
    https://doi.org/10.1038/ng0704-664 [Google Scholar]
  102. Horn, F .; Lau, A. L .; and Cohen, F. E
    2004 Automated extraction of mutation data from the literature: application of MuteXt to G protein-coupled receptors and nuclear hormone ­receptors. Bioinformatics20(4):557–568. doi: 10.1093/bioinformatics/btg449
    https://doi.org/10.1093/bioinformatics/btg449 [Google Scholar]
  103. Hripcsak, G .; Bakken, S .; Stetson, P. D .; and Patel, V. L
    2003 Mining complex clinical data for patient safety research: a framework for event discovery. Journal of Biomedical Informatics36(1–2):120–130. doi: 10.1016/j.jbi.2003.08.001
    https://doi.org/10.1016/j.jbi.2003.08.001 [Google Scholar]
  104. Hu, Z .; Narayanaswami, M .; Ravikumar, K .; Vijay-Shanker, K .; and Wu, C
    2005 Literature mining and database annotation of protein phosphorylation using a rule-based system. Bioinformatics21(11):2759–2765. doi: 10.1093/bioinformatics/bti390
    https://doi.org/10.1093/bioinformatics/bti390 [Google Scholar]
  105. Huang, M .; Zhu, X .; Hao, Y .; Payan, D. G .; Qu, K .; and Li, M
    2004 Discovering patterns to extract protein–protein interactions from full texts. Bioinformatics20(18):3604–12. doi: 10.1093/bioinformatics/bth451
    https://doi.org/10.1093/bioinformatics/bth451 [Google Scholar]
  106. Humphrey, S. M .; Rogers, W. J .; Kilicoglu, H .; Demner-Fushman, D .; and Rindflesch, T. C
    2006 Word sense disambiguation by selecting the best semantic type based on journal descriptor indexing: Preliminary experiment. Journal of the American Society for Information Science and Technology57(1):96–113. doi: 10.1002/asi.20257
    https://doi.org/10.1002/asi.20257 [Google Scholar]
  107. Humphreys, B. L ., and Lindberg, D. A
    1993 The umls project: making the conceptual connection between users and the information they need. Bulletin of the Medical Library Association81(2):170–177.
    [Google Scholar]
  108. Hunter, L ., and Cohen, K. B
    2006 Biomedical language processing: what’s beyond PubMed?Molecular Cell21:589–594. doi: 10.1016/j.molcel.2006.02.012
    https://doi.org/10.1016/j.molcel.2006.02.012 [Google Scholar]
  109. Hunter, L .; Lu, Z .; Firby, J .; Baumgartner Jr., W. A .; Johnson, H. L .; Ogren, P. V .; and Cohen, K. B
    2008 OpenDMAP: An open-source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-specific gene expression. BMC Bioinformatics9(78). doi: 10.1186/1471‑2105‑9‑78
    https://doi.org/10.1186/1471-2105-9-78 [Google Scholar]
  110. Hunter, L. E
    2009The processes of life: An introduction to molecular biology. MIT Press. doi: 10.7551/mitpress/9780262013055.001.0001
    https://doi.org/10.7551/mitpress/9780262013055.001.0001 [Google Scholar]
  111. Ide, N. C .; Loane, R. F .; and Demner-Fushman, D
    2007 Essie: A concept-based search engine for structured biomedical text. Journal of the American Medical Informatics Association14:253–263. doi: 10.1197/jamia.M2233
    https://doi.org/10.1197/jamia.M2233 [Google Scholar]
  112. Jackson, P ., and Moulinier, I
    2002Natural language processing for online applications: text retrieval, extraction, and categorization. John Benjamins Publishing Company.
    [Google Scholar]
  113. Jacquemart, P ., and Zweigenbaum, P
    2003 Towards a medical question-answering system: A feasibility study. In Baud, R .; Fieschi, M .; Beux, P. L .; and Ruch, P ., eds., The New Navigators: From Professionals to Patients, volume 95 of Actes Medical Informatics Europe, Studies in Health Technology and Informatics, 463–468. Amsterdam: IOS Press.
    [Google Scholar]
  114. Jaeschke, R .; Guyatt, G. H .; and Sackett, D. L
    1994 Users’ guides to the medical literature. iii. how to use an article about a diagnostic test. b. what are the results and will they help me in caring for my patients? the evidence-based medicine working group. The Journal of the American Medical Association271(9):703–707. doi: 10.1001/jama.1994.03510330081039
    https://doi.org/10.1001/jama.1994.03510330081039 [Google Scholar]
  115. Jenssen, T.-K .; Lægreid, A .; Komorowski, J .; and Hovig, E
    2001 A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics28:21–28.
    [Google Scholar]
  116. JFP
    2010 Clinical inquiries. The Journal of Family Practice. Available from: www.jfponline.com. accessed 2010.
  117. Jiang, J ., and Zhai, C
    2007 An empirical study of tokenization strategies for biomedical information retrieval. Information Retrieval10(4-5):341–363. doi: 10.1007/s10791‑007‑9027‑7
    https://doi.org/10.1007/s10791-007-9027-7 [Google Scholar]
  118. Jimeno-Yepes, A ., and Aronson, A. R
    2010 Knowledge-based biomedical word sense disambiguation: comparison of approaches. BMC Bioinformatics11(5):569. doi: 10.1186/1471‑2105‑11‑569
    https://doi.org/10.1186/1471-2105-11-569 [Google Scholar]
  119. Jin, Y .; McDonald, R. T .; Lerman, K .; Mandel, M. A .; Carroll, S .; Liberman, M. Y .; Pereira, F. C .; Winters, R. S .; and White, P. S
    2006 Automated recognition of malignancy mentions in biomedical literature. BMC Bioinformatics7.
    [Google Scholar]
  120. Jin, F .; Huang, M .; Lu, Z .; and Zhu, X
    2009 Towards automatic generation of gene summary. In Proceedings of the BioNLP 2009 Workshop , 97–105. Boulder, Colorado: Association for Computational Linguistics.
    [Google Scholar]
  121. Joachims, T
    1999 Making large-scale SVM learning practical. In SchÖlkopf, B .; Burges, C .; and Smola, A ., eds., Advances in kernel methods: Support vector learning. MIT Press.
    [Google Scholar]
  122. Johnson, D .; Zou, Q .; Dionisio, J .; Liu, V .; and Chu, W
    2002 Modeling medical content for automated summarization. Annals of the New York Academy of Sciences980:247–258. doi: 10.1111/j.1749‑6632.2002.tb04901.x
    https://doi.org/10.1111/j.1749-6632.2002.tb04901.x [Google Scholar]
  123. Johnson, H. L .; Cohen, K. B .; Baumgartner Jr., W. A .; Lu, Z .; Bada, M .; Kester, T .; Kim, H .; and Hunter, L
    2006 Evaluation of lexical methods for detecting relationships between concepts from multiple ontologies. Pac Symp Biocomput , 28–39.
    [Google Scholar]
  124. Johnson, S. B
    1999 A semantic lexicon for medical language processing. J Am Med Inform Assoc6(3):205–218. doi: 10.1136/jamia.1999.0060205
    https://doi.org/10.1136/jamia.1999.0060205 [Google Scholar]
  125. Jurafsky, D ., and Martin, J. H
    2008Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Pearson Prentice Hall.
    [Google Scholar]
  126. Kan, M.-Y .; McKeown, K. R .; and Klavans, J. L
    2001a Applying natural language generation to indicative summarization. In Proceedings of the 8th European workshop on Natural Language Generation – Volume 8, EWNLG ’01, 1–9. Morristown, NJ, USA: Association for Computational Linguistics.
    [Google Scholar]
  127. 2001b Domain-specific informative and indicative summarization for information retrieval. In Proceedings of the Document Understanding Workshop (DUC 2001) , New Orleans.
    [Google Scholar]
  128. Kaner, C .; Bach, J .; and Pettichord, B
    2002Lessons learned in software testing: a context-driven approach. John Wiley and Sons, Inc.
    [Google Scholar]
  129. Kaner, C .; Nguyen, H. Q .; and Falk, J
    1999Testing computer software, 2nd edition. John Wiley and Sons.
    [Google Scholar]
  130. Kann, M .; Ofran, Y .; Punta, M .; and Radivojac, P
    2006 Protein interactions and disease. In Pacific Symposium on Biocomputing , 351–353. World Scientific Publishing Company.
    [Google Scholar]
  131. Katz, B .; Lin, J .; and Felshin, S
    2001 Gathering knowledge for a question answering system from heterogeneous information sources. In Proceedings of the ACL 2001 Workshop on Human Language Technology and Knowledge Management .
    [Google Scholar]
  132. Kerrien, S .; Alam-Faruque, Y .; Aranda, B .; Bancarz, I .; Bridge, A .; Derow, C .; Dimmer, E .; Feuermann, M .; Friedrichsen, A .; Huntley, R .; Kohler, C .; Khadake, J .; Leroy, C .; Liban, A .; Lieftink­, C .; Montecchi-Palazzi, L .; Orchard, S .; Risse, J .; Robbe, K .; Roechert, B .; Thorneycroft­, D .; Zhang, Y .; Apweiler, R .; and Hermjakob, H
    2006 IntAct – open source resource for molecular interaction data. Nucleic Acids Research35.
    [Google Scholar]
  133. Kilicoglu, H ., and Bergler, S
    2009 Syntactic dependency based heuristics for biological event extraction. In BioNLP ’09 Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing: Shared Task , 119–127.
    [Google Scholar]
  134. Kim, J.-D .; Ohta, T .; Tateisi, Y .; and Tsujii, J
    2003 Genia corpus – a semantically annotated corpus for bio-textmining. Bioinformatics19(Suppl. 1):180–182. doi: 10.1093/bioinformatics/btg1023
    https://doi.org/10.1093/bioinformatics/btg1023 [Google Scholar]
  135. Kim, J.-D .; Ohta, T .; Pyysalo, S .; Kano, Y .; and Tsujii, J
    2009 Overview of BioNLP’09 shared task on event extraction. In BioNLP 2009 Companion Volume: Shared Task on Entity ­Extraction , 1–9.
    [Google Scholar]
  136. Kipper-Schuler, K
    2005VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. Dissertation, University of Pennsylvania dissertation.
    [Google Scholar]
  137. Kogan, Y .; Collier, N .; Pakhomov, S .; and Krauthammer, M
    2005 Towards semantic role labeling & IE in the medical literature. In AMIA 2005 Symposium Proceedings , 410–414.
    [Google Scholar]
  138. Krallinger, M .; Leitner, F .; Rodriguez-Penagos, C .; and Valencia, A
    2008 Overview of the protein–protein interaction annotation extraction task of BioCreative II. Genome Biology9(Suppl. 2).
    [Google Scholar]
  139. Krallinger, M .; Leitner, F .; and Valencia, A
    2007 Assessment of the second BioCreative PPI task: automatic extraction of protein–protein interactions. In Proceedings of the Second BioCreative Challenge Evaluation Workshop .
    [Google Scholar]
  140. Kucera, H .; Francis, W. N .; and Carroll, J. B
    1967Computational analysis of present day American English. Brown University Press.
    [Google Scholar]
  141. Lancaster, F. W
    1969 Medlars: Report on the evaluation of its operating efficiency. American Documentation20(2):119–148. doi: 10.1002/asi.4630200204
    https://doi.org/10.1002/asi.4630200204 [Google Scholar]
  142. Laupacis, A .; Wells, G .; Richardson, W. S .; and Tugwell, P
    1994 Users’ guides to the medical literature. v. how to use an article about prognosis. evidence-based medicine working group. The Journal of the American Medical Association272(3):234–237. doi: 10.1001/jama.1994.03520030076032
    https://doi.org/10.1001/jama.1994.03520030076032 [Google Scholar]
  143. Lesk, M
    1986 Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In SIGDOC ’86: Proceedings of the 5th annual international conference on systems documentation , 24–26. New York, NY, USA: ACM Press.
    [Google Scholar]
  144. Levine, M .; Walter, S .; Lee, H .; Haines, T .; Holbrook, A .; and Moyer, V
    1994 Users’ guides to the medical literature. iv. how to use an article about harm. evidence-based medicine working group. The Journal of the American Medical Association271(20):1615–1619. doi: 10.1001/jama.1994.03510440075037
    https://doi.org/10.1001/jama.1994.03510440075037 [Google Scholar]
  145. Lin, J
    2009 Is searching full text more effective than searching abstracts?BMC Bioinformatics 10(46).
    [Google Scholar]
  146. Liu, H .; Christiansen, T .; Baumgartner Jr., W. A .; and Verspoor, K
    2013 BioLemmatizer: a lemmatization tool for morphological processing of biomedical text. Journal of Biomedical Semantics, 3:3. doi: 10.1186/2041‑1480‑3‑3
    https://doi.org/10.1186/2041-1480-3-3 [Google Scholar]
  147. Lu, Z .; Cohen, B. K .; and Hunter, L
    2006 Finding GeneRIFs via Gene Ontology annotations. In PSB 2006, 52–63.
    [Google Scholar]
  148. Lu, Z
    2007Text mining on GeneRIFs. Ph.D. Dissertation, University of Colorado School of Medicine.
    [Google Scholar]
  149. Marcus, M. P .; Marcinkiewicz, M. A .; and Santorini, B
    1993 Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics19(2):313–330.
    [Google Scholar]
  150. McConnell, S
    2004Code complete. Microsoft Press, 2nd edition.
    [Google Scholar]
  151. McCray, A. T .; Burgun, A .; and Bodenreider, O
    2001 Aggregating UMLS semantic types for reducing conceptual complexity. In Proceedings of 10th World Congress on Medical Informatics (MEDINFO 2001) , 216–220.
    [Google Scholar]
  152. Müller, H.-M .; Kenny, E. E .; and Sternberg, P. W
    2004 Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol2(11):e309. doi: 10.1371/journal.pbio.0020309
    https://doi.org/10.1371/journal.pbio.0020309 [Google Scholar]
  153. Miller, G
    2006 A scientist’s nightmare: software problem leads to five retractions. Science314:1856–1857. doi: 10.1126/science.314.5807.1856
    https://doi.org/10.1126/science.314.5807.1856 [Google Scholar]
  154. Morgan, A. A .; Hirschman, L .; Colosimo, M .; Yeh, A. S .; and Colombe, J. B
    2004 Gene name identification and normalization using a model organism database. J. Biomedical Informatics37(6):396–410. doi: 10.1016/j.jbi.2004.08.010
    https://doi.org/10.1016/j.jbi.2004.08.010 [Google Scholar]
  155. Myers, G
    1979The art of software testing. John Wiley and Sons.
    [Google Scholar]
  156. Narayanaswamy, M .; Ravikumar, K. E .; and Shanker, V. K
    2005 Beyond the clause: extraction of phosphorylation information from medline abstracts. Bioinformatics21(Suppl. 1). doi: 10.1093/bioinformatics/bti1011
    https://doi.org/10.1093/bioinformatics/bti1011 [Google Scholar]
  157. Neves, M. L .; Carazo, J.-M .; and Pascual-Montano, A
    2010 Moara: a Java library for extracting and normalizing gene and protein mentions. BMC Bioinformatics11. doi: 10.1186/1471‑2105‑11‑157
    https://doi.org/10.1186/1471-2105-11-157 [Google Scholar]
  158. Ng, S.-K
    2006 Integrating text mining with data mining. In Ananiadou, S ., and McNaught, J ., eds., Text mining for biology and biomedicine. Artech House Publishers.
    [Google Scholar]
  159. Nielsen, J
    1989 Usability engineering at a discount. In Proceedings of the third international conference on human-computer interaction , 394–401.
    [Google Scholar]
  160. Ogren, P .; Cohen, K .; and Hunter, L
    2005 Implications of compositionality in the Gene Ontology for its curation and usage. In Pacific Symposium on Biocomputing , 174–185.
    [Google Scholar]
  161. OLDMEDLINE
  162. Olsson, F .; Eriksson, G .; Franzén, K .; Asker, L .; and Lidén, P
    2002 Notions of correctness when evaluating protein name taggers. In Proceedings of the 19th international conference on computational linguistics (COLING 2002) , 765–771.
    [Google Scholar]
  163. Ono, T .; Hishigaki, H .; Tanigami, A .; and Takagi, T
    2001 Automated extraction of information on protein–protein interactions from the biological literature. Bioinformatics17(2):60–67. doi: 10.1093/bioinformatics/17.2.155
    https://doi.org/10.1093/bioinformatics/17.2.155 [Google Scholar]
  164. Palmer, M .; Kingsbury, P .; and Gildea, D
    2005 The Proposition Bank: an annotated corpus of semantic roles. Computational Linguistics31(1):71–106. doi: 10.1162/0891201053630264
    https://doi.org/10.1162/0891201053630264 [Google Scholar]
  165. Pedersen, T
    2008 Empiricism is not a matter of faith. Comput. Linguist. 34(3):465–470. doi: 10.1162/coli.2008.34.3.465
    https://doi.org/10.1162/coli.2008.34.3.465 [Google Scholar]
  166. Pestian, J. P .; Brew, C .; Matykiewicz, P .; Hovermale, D .; Johnson, N .; Cohen, K. B .; and Duch, W
    2007 A shared task involving multi-label classification of clinical free text. In Proceedings of BioNLP 2007 . Association for Computational Linguistics.
    [Google Scholar]
  167. Pratt, A. W ., and Pacak, M. G
    1969 Automated processing of medical English. In Proceedings of the 1969 conference on Computational linguistics , 1–23. doi: 10.3115/990403.990414
    https://doi.org/10.3115/990403.990414 [Google Scholar]
  168. Pratt, W ., and Yetisgen-Yildiz, M
    2003 A study of biomedical concept identification: MetaMap vs. people. In Proceeding of the 2003 Annual Symposium of the American Medical Informatics Association (AMIA 2003) , 529–533.
    [Google Scholar]
  169. Pyysalo, S .; Ohta, T .; Kim, J.-D .; and Tsujii, J
    2009 Static relations: a piece in the biomedical information extraction puzzle. In Proceedings of the BioNLP 2009 Workshop , 1–9. Boulder, Colorado: Association for Computational Linguistics.
    [Google Scholar]
  170. Regev, Y .; Finkelstein-Landau, M .; Feldman, R .; Gorodetsky, M .; Zheng, X .; Levy, S .; Charlab, R .; Lawrence, C .; Lippert, R. A .; Zhang, Q .; and Shatkay, H
    2002 Rule-based extraction of experimental evidence in the biomedical domain: the kdd cup 2002 (task 1). SIGKDD Explor. Newsl. 4(2):90–92. doi: 10.1145/772862.772874
    https://doi.org/10.1145/772862.772874 [Google Scholar]
  171. Richardson, W. S ., and Wilson, M. C
    1997 On questions, background and foreground. Evidence Based Health Care Newsletter17:8–9.
    [Google Scholar]
  172. Richardson, W. S .; Wilson, M. C .; Nishikawa, J .; and Hayward, R. S
    1995 The well-built clinical question: A key to evidence-based decisions. American College of Physicians Journal Club 123(3):A12–A13.
    [Google Scholar]
  173. Rindflesch, T .; Tanabe, L .; Weinstein, J .; and Hunter, L
    2000 EDGAR: extraction of drugs, genes and relations from the biomedical literature. In Pacific Symposium on Biocomputing , 515–524.
    [Google Scholar]
  174. Rosario, B ., and Hearst, M. A
    2004 Classifying semantic relations in bioscience texts. In Proceedings of ACL 2004 , 430–437.
    [Google Scholar]
  175. Rosario, B ., and Hearst, M
    2005 Multi-way Relation Classification: Application to Protein–protein­ Interactions. In Proceedings of the HLT-NAACL , volume 5.
    [Google Scholar]
  176. Rosenberg, W ., and Donald, A
    1995 Evidence based medicine: an approach to clinical problem-solving. British Medical Journal310(6987):1122–1126. doi: 10.1136/bmj.310.6987.1122
    https://doi.org/10.1136/bmj.310.6987.1122 [Google Scholar]
  177. Rzhetsky, A .; Iossifov, I .; Koike, T .; Krauthammer, M .; Kra, P .; Morris, M .; Yu, H .; Duboué, P. A .; Weng, W .; Wilbur, W. J .; Hatzivassiloglou, V .; and Friedman, C
    2004 Geneways: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. Journal of Biomedical Informatics37:43–53. doi: 10.1016/j.jbi.2003.10.001
    https://doi.org/10.1016/j.jbi.2003.10.001 [Google Scholar]
  178. Sackett, D. L .; Straus, S. E .; Richardson, W. S .; Rosenberg, W .; and Haynes, R. B
    2000Evidence-Based Medicine: How to Practice and Teach EBM. Edinburgh: Churchill Livingstone, second edition.
    [Google Scholar]
  179. Saeed, M .; Villarroel, M .; Reisner, A. T .; Clifford, G .; Lehman, L .; Moody, G .; Heldt, T .; Kyaw, T. H .; Moody, B .; and Mark, R. G
    2011 Multiparameter intelligent monitoring in intensive care ii (mimic-ii): A public-access intensive care unit database. Critical Care Medicine39(5):952–960. doi: 10.1097/CCM.0b013e31820a92c6
    https://doi.org/10.1097/CCM.0b013e31820a92c6 [Google Scholar]
  180. Sandusky, R ., and Tenopir, C
    2008 Finding and using journal article components: Impacts of disaggregation on teaching and research practice. Joural of the American Society for Information Science and Technology59(6):970–982. doi: 10.1002/asi.20804
    https://doi.org/10.1002/asi.20804 [Google Scholar]
  181. Schuemie, M. J .; Kors, J. A .; and Mons, B
    2005 Word sense disambiguation in the biomedical domain: an overview. J Comput Biol12(5):554–565. doi: 10.1089/cmb.2005.12.554
    https://doi.org/10.1089/cmb.2005.12.554 [Google Scholar]
  182. Schwartz, A ., and Hearst, M
    2003 A simple algorithm for identifying abbreviation definitions in biomedical text. In Pacific Symposium on Biocomputing , volume 8, 451–462.
    [Google Scholar]
  183. Settles, B
    2005 ABNER: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics21(14):3191–3192. doi: 10.1093/bioinformatics/bti475
    https://doi.org/10.1093/bioinformatics/bti475 [Google Scholar]
  184. Shah, P. K .; Jensen, L. J .; Boué, S .; and Bork, P
    2005 Extraction of transcript diversity from scientific literature. PLoS Computational Biology1(1):67–73. doi: 10.1371/journal.pcbi.0010010
    https://doi.org/10.1371/journal.pcbi.0010010 [Google Scholar]
  185. Shapiro, A. R
    1980 A system for conceptual analysis of medical practices. In Proceedings of the Annual Symposium on Computer Application in Medical Care , 867–872.
    [Google Scholar]
  186. Shatkay, H .; Chen, N .; and Blostein, D
    2006 Integrating image data into biomedical text categorization. Bioinformatics22(14):446–453. doi: 10.1093/bioinformatics/btl235
    https://doi.org/10.1093/bioinformatics/btl235 [Google Scholar]
  187. Siadaty, M. S .; Shu, J .; and Knaus, W. A
    2007 Relemed: sentence-level search engine with relevance score for the MEDLINE database of biomedical articles. BMC Medical Informatics and Decision Making7(1). doi: 10.1186/1472‑6947‑7‑1
    https://doi.org/10.1186/1472-6947-7-1 [Google Scholar]
  188. Sibanda, T ., and Uzuner, O
    2006 Role of local context in automatic deidentification of ungrammatical, fragmented text. In Proceedings of the Human Language Technology Conference of the NAACL, Main Conference , 65–73. New York City, USA: Association for Computational Linguistics.
    [Google Scholar]
  189. Smalheiser, N. R ., and Swanson, D. R
    1999 Implicit text linkages between Medline records: Using Arrowsmith as an aid to scientific discovery. LIBRARY TRENDS48(1):48–59.
    [Google Scholar]
  190. Smith, R ., and Chalmers, I
    2001 Britain’s gift: a “medline” of synthesised evidence. BMJ323:1437–1438. doi: 10.1136/bmj.323.7327.1437
    https://doi.org/10.1136/bmj.323.7327.1437 [Google Scholar]
  191. Smith, R
    1996 What clinical information do doctors need?BMJ 313:1062–1068. doi: 10.1136/bmj.313.7064.1062
    https://doi.org/10.1136/bmj.313.7064.1062 [Google Scholar]
  192. Srinivasan, P
    1996 Query expansion and MEDLINE. Information Processing and Management32(4):431–443. doi: 10.1016/0306‑4573(95)00076‑3
    https://doi.org/10.1016/0306-4573(95)00076-3 [Google Scholar]
  193. Stetson, P. D .; Johnson, S. B .; Scotch, M .; and Hripcsak, G
    2002 The sublanguage of cross-coverage­. In Proc. AMIA 2002 Annual Symposium , 742–746.
    [Google Scholar]
  194. Stevenson, M .; Guo, Y .; Gaizauskas, R .; and Martinez, D
    2008 Disambiguation of biomedical text using diverse sources of information. BMC Bioinformatics 9(Suppl 11):s7. doi: 10.1186/1471‑2105‑9‑S11‑S7
    https://doi.org/10.1186/1471-2105-9-S11-S7 [Google Scholar]
  195. Sundheim, B. M
    1992 Overview of the fourth message understanding evaluation and conference. In Proceedings of the 4th conference on Message understanding, MUC4 ’92, 3–21. Stroudsburg, PA, USA: Association for Computational Linguistics.
    [Google Scholar]
  196. Swanson, D. R
    1960 Searching natural language text by computer. Science132(3434):1099–1104. doi: 10.1126/science.132.3434.1099
    https://doi.org/10.1126/science.132.3434.1099 [Google Scholar]
  197. 1986a Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspectives in Biology and Medicine30:7–18.
    [Google Scholar]
  198. 1986b Undiscovered public knowledge. Libr Q56(2):103–118. doi: 10.1086/601720
    https://doi.org/10.1086/601720 [Google Scholar]
  199. Tanabe, L .; Scherf, U .; Smith, L. H .; Lee, J. K .; Hunter, L .; and Weinstein, J. N
    1999 MedMiner: an Internet text-mining tool for biomedical information, with application to gene expression profiling. Biotechniques27(6):1210–1217.
    [Google Scholar]
  200. Tateisi, Y .; Yakushiji, A .; Ohta, T .; and Tsujii, J
    2005 Syntax annotation for the GENIA corpus. In Second international joint conference on natural language processing: Companion volume , 220–225.
    [Google Scholar]
  201. The Gene Ontology Consortium
    2000. Gene Ontology: tool for the unification of biology. Nat Genet25(1):25–29. doi: 10.1038/75556
    https://doi.org/10.1038/75556 [Google Scholar]
  202. Ting, K. M ., and Witten, I. H
    1999 Issues in stacked generalization. Journal of Artificial Intelligence Research10:271–289.
    [Google Scholar]
  203. US-Congress
    1977Policy Implications of Medical Information Systems. Washington, D.C.: OTA publications.
    [Google Scholar]
  204. Uzuner, O .; South, B. R .; Shen, S .; and DuVall, S. L
    2011 2010 i2b2va challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association18:552–556. doi: 10.1136/amiajnl‑2011‑000203
    https://doi.org/10.1136/amiajnl-2011-000203 [Google Scholar]
  205. Uzuner, O .; Luo, Y .; and Szolovits, P
    2007 Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association14(5):550–563. doi: 10.1197/jamia.M2444
    https://doi.org/10.1197/jamia.M2444 [Google Scholar]
  206. Varadan, R .; Assfalg, M .; Raasi, S .; Pickart, C .; and Fushman, D
    2005 Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a uba domain. Molecular Cell18(6):687–698. doi: 10.1016/j.molcel.2005.05.013
    https://doi.org/10.1016/j.molcel.2005.05.013 [Google Scholar]
  207. Verspoor, K .; Dvorkin, D .; Cohen, K. B .; and Hunter, L
    2009 Ontology quality assurance through analysis of term transformations. Bioinformatics25(12):77–84. doi: 10.1093/bioinformatics/btp195
    https://doi.org/10.1093/bioinformatics/btp195 [Google Scholar]
  208. Verspoor, K .; Cohen, K. B .; Lanfranchi, A .; Warner, C .; Johnson, H. L .; Roeder, C .; Choi, J. D .; Funk, C .; Malenkiy, Y .; Eckert, M .; Xue, N .; Baumgartner Jr., W. A .; Bada, M .; Palmer, M .; and Hunter, L. E
    2012 A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools. BMC Bioinformatics13:207. doi: 10.1186/1471‑2105‑13‑207
    https://doi.org/10.1186/1471-2105-13-207 [Google Scholar]
  209. Verspoor, C .; Joslyn, C .; and Papcun, G
    2003 The Gene Ontology as a source of lexical semantic knowledge for a biological natural language processing application. In Proceedings of the SIGIR’03 Workshop on Text Analysis and Search for Bioinformatics .
    [Google Scholar]
  210. Voorhees, E. M ., and Harman, D. K
    2005 The Text REtrieval Conference. In Voorhees, E. M ., and Harman, D. K ., eds., TREC: Experiment and evaluation in information retrieval, 3–19. MIT Press.
    [Google Scholar]
  211. Voorhees, E. M
    1999Natural language processing and information retrieval. New York: Springer. 32–48. editor M T. Pazienza .
    [Google Scholar]
  212. Wang, P .; Morgan, A. A .; Zhang, Q .; Sette, A .; and Peters, B
    2007 Automating document classification for the Immune Epitope Database. BMC Bioinformatics8(269).
    [Google Scholar]
  213. Wattarujeekrit, T .; Shah, P. K .; and Collier, N
    2004 PASBio: predicate-argument structures for event extraction in molecular biology. BMC Bioinformatics5(155). doi: 10.1186/1471‑2105‑5‑155
    https://doi.org/10.1186/1471-2105-5-155 [Google Scholar]
  214. Weeber, M .; Mork, J .; and Aronson, A
    2001 Developing a test collection for biomedical word sense disambiguation. In Proc AMIA Symp , volume 746, 50.
    [Google Scholar]
  215. Weizenbaum, J
    1966 Eliza – a computer program for the study of natural language communication between man and machine. Commun. ACM9(1):36–45. doi: 10.1145/365153.365168
    https://doi.org/10.1145/365153.365168 [Google Scholar]
  216. Wiegers, T. C .; Davis, A. P .; Cohen, K. B .; Hirschman, L .; and Mattingly, C. J
    2009 Text mining and manual curation of chemical-gene-disease networks for the Comparative Toxicogenomics Database (CTD). BMC Bioinformatics10(326). doi: 10.1186/1471‑2105‑10‑326
    https://doi.org/10.1186/1471-2105-10-326 [Google Scholar]
  217. Wiegers, K
    2002Peer reviews in software: A practical guide. Addison-Wesley.
    [Google Scholar]
  218. Wilczynski, N .; McKibbon, K. A .; and Haynes, R. B
    2001 Enhancing retrieval of best evidence for health care from bibliographic databases: Calibration of the hand search of the literature. In Proceedings of 10th World Congress on Medical Informatics (MEDINFO 2001) , 390–393.
    [Google Scholar]
  219. Xenarios, I .; Salwinski, L .; Duan, X. J .; Higney, P .; Kim, S.-M .; and Eisenberg, D
    2002 DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Research30(1):303–305. doi: 10.1093/nar/30.1.303
    https://doi.org/10.1093/nar/30.1.303 [Google Scholar]
  220. Xu, H .; Anderson, K .; Grann, V. R .; and Friedman, C
    2004 Facilitating cancer research using natural language processing of pathology reports. In Studies in health technology and informatics, 865–872.
    [Google Scholar]
  221. Xu, R .; Supekar, K .; Morgan, A .; Das, A .; and Garber, A
    2008 Unsupervised method for automatic construction of a disease dictionary from a large free text collection. In AMIA Annu Symp Proc , 820–824.
    [Google Scholar]
  222. Yang, X. F .; Su, J .; Zhou, G. D .; and Tan, C. L
    2004a A NP-cluster based approach to coreference resolution. In Proceedings of 20th International Conference on Computational Linguistics (COLING 2004) , 226–232. doi: 10.3115/1220355.1220388
    https://doi.org/10.3115/1220355.1220388 [Google Scholar]
  223. Yang, X .; Zhou, G .; Su, J .; and Tan, C. L
    2004b Improving noun phrase coreference resolution by matching strings. In IJCNLP04 , 326–333.
    [Google Scholar]
  224. Yeh, A .; Morgan, A .; Colosimo, M .; and Hirschman, L
    2005 BioCreative task 1a: gene mention finding evaluation. BMC Bioinformatics6(1). doi: 10.1186/1471‑2105‑6‑S1‑S2
    https://doi.org/10.1186/1471-2105-6-S1-S2 [Google Scholar]
  225. Yuan, X .; Hu, Z .; Wu, H .; Torii, M .; Narayanaswami, M .; Ravikumar, K .; Vijay-Shanker, K .; and Wu, C
    2006 An online literature mining tool for protein phosphorylation. Bioinformatics22(13):1668–1669. doi: 10.1093/bioinformatics/btl159
    https://doi.org/10.1093/bioinformatics/btl159 [Google Scholar]
  226. Zhang, J .; Ga, J .; Zhou, M .; and Wang, J
    2001 Improving the effectiveness of information ­retrieval with clustering and fusion. Computational Linguistics and Chinese Language Processing6(1):109–125.
    [Google Scholar]
  227. Zieman, Y. L ., and Bleich, H. L
    1997 Conceptual mapping of user’s queries to medical subject headings. In Proceedings of the 1997 Annual Symposium of the American Medical Informatics Association (AMIA 1997) , 519–522.
    [Google Scholar]
  228. Zou, Q .; Chu, W. W .; Morioka, C .; Leazer, G. H .; and Kangarloo, H
    2003 Indexfinder: A method of extracting key concepts from clinical texts for indexing. In Proceedings of the 2003 ­Annual Symposium of the American Medical Informatics Association (AMIA 2003) , 763–767.
    [Google Scholar]
/content/books/9789027271068
Loading
/content/books/9789027271068
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Chapter
10
5
Chapter
content/books/9789027271068
Book
false
Loading
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error