1887
Volume 33, Issue 1
  • ISSN 1461-0213
  • E-ISSN: 1570-5595

Abstract

Abstract

The amount of available digital data is increasing at a tremendous rate. These data, however, are of limited use unless converted into a user-friendly form. We took on this task and built a natural language generation (NLG) driven system that generates journalistic news stories about elections without human intervention. In this paper, after presenting an overview of state-of-the-art technologies in NLG, we explain systematically how we identified and then recontextualized the determinant aspects of the genre of an online news story in the algorithm of our NLG software. In the discussion, we introduce the key results of a user test we carried out and some improvements that these results suggest. Then, after relating the news items that our NLG system generates to general aspects of genres and their evolution, we conclude by questioning the idea that journalistic NLG systems should mimic journalism written by humans. Instead, we suggest that developmental work in the field of news automation should aim to create a new genre based on the inherent strengths of NLG. Finally, we present a few suggestions as to what this genre could include.

Available under the CC BY-NC 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/aila.00030.haa
2020-10-07
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/aila.00030.haa.html?itemId=/content/journals/10.1075/aila.00030.haa&mimeType=html&fmt=ahah

References

  1. Beckett, C.
    (2019) New powers, new responsibilities. A global survey of journalism and artificial intelligence. The Journalism AI. Retrieved from https://blogs.lse.ac.uk/polis/2019/11/18/new-powers-new-responsibilities (22 February, 2020).
    [Google Scholar]
  2. Chandola, V., Banerjee, A., & Kumar, V.
    (2009) Anomaly detection: A survey. ACM Computing Surveys, 41(3), 15:1–15:58. doi:  10.1145/1541880.1541882
    https://doi.org/10.1145/1541880.1541882 [Google Scholar]
  3. Clerwall, C.
    (2014) Enter the robot journalist: Users’ perceptions of automated content. Journalism Practice, 8(5), 519–531. doi:  10.1080/17512786.2014.883116
    https://doi.org/10.1080/17512786.2014.883116 [Google Scholar]
  4. Devitt, A. J.
    (2004) Writing genres. Carbondale, IL: Southern Illinois University Press.
    [Google Scholar]
  5. Diakopoulos, N.
    (2019) Automating the news. How algorithms are rewriting the media. Cambridge, MA: Harvard University Press. 10.4159/9780674239302
    https://doi.org/10.4159/9780674239302 [Google Scholar]
  6. Fairclough, N.
    (1992) Discourse and social change. Cambridge: Polity Press.
    [Google Scholar]
  7. Gatt, A., & Krahmer, E.
    (2017) Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 60, 75–170.
    [Google Scholar]
  8. Graefe, A., Haim, M., Haarmann, B., & Brosius, H.-B.
    (2016) Readers’ perception of computer-generated news: Credibility, expertise, and readability. Journalism, 19(5), 595–610. doi:  10.1177/1464884916641269
    https://doi.org/10.1177/1464884916641269 [Google Scholar]
  9. Gruber, H.
    (2019) Genres, media, and recontextualization practices: Re-considering basic concepts of genre theory in the age of social media. Internet Pragmatics, 2(1): 54–82. doi:  10.1075/ip.00023.gru
    https://doi.org/10.1075/ip.00023.gru [Google Scholar]
  10. Gupta, M., Gao, J., Aggarwal, C. C., & Han, J.
    (2014) Outlier detection for temporal data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2250–2267. 10.1109/TKDE.2013.184
    https://doi.org/10.1109/TKDE.2013.184 [Google Scholar]
  11. Hansen, M., Roca-Sales, M., Keegan, J. M., & King, G.
    (2017) Artificial intelligence: Practice and implications for journalism. Columbia University Academic Commons. doi:  10.7916/D8X92PRD
    https://doi.org/10.7916/D8X92PRD [Google Scholar]
  12. Kim, D. & Lee, J.
    (2019) Designing an algorithm-driven text generation system for personalized and interactive news reading. International Journal of Human–Computer Interaction, 35(2), 109–122. doi:  10.1080/10447318.2018.1437864
    https://doi.org/10.1080/10447318.2018.1437864 [Google Scholar]
  13. Latar, N. L.
    (2015) The robot journalist in the age of social physics: The end of human journalism?InG. Einav (Ed.), The new world of transitioned media: Digital realignment and industry transformation (pp.65–80). Wiesbaden: Springer. 10.1007/978‑3‑319‑09009‑2_6
    https://doi.org/10.1007/978-3-319-09009-2_6 [Google Scholar]
  14. Lee, A. M.
    (2014) How fast is too fast? Examining the impact of speed-driven journalism on news production and audience reception (Unpublished doctoral dissertation). The University of TexasatAustin.
  15. Leppänen, L., Munezero, M., Granroth-Wilding, M., & Toivonen, H.
    (2017a) Data-driven news generation for automated journalism. InProceedings of the 10th International Conference on Natural Language Generation, 188–197. 10.18653/v1/W17‑3528
    https://doi.org/10.18653/v1/W17-3528 [Google Scholar]
  16. Leppänen, L., Munezero, M., Sirén-Heikel, S., Granroth-Wilding, M., & Toivonen, H.
    (2017b) Finding and expressing news from structured data. InProceedings of the 21st International Academic Mindtrek Conference, 174–183. 10.1145/3131085.3131112
    https://doi.org/10.1145/3131085.3131112 [Google Scholar]
  17. Lindén, C.-G.
    (2017) Decades of automation in the newsroom: Why are there still so many jobs in journalism?Digital Journalism, 5(2), 123–140. doi:  10.1080/21670811.2016.1160791
    https://doi.org/10.1080/21670811.2016.1160791 [Google Scholar]
  18. Lindén, C.-G., & Tuulonen, H. (Eds.) together with Bäck, A., Diakopoulos, N., Haapanen, L., Leppänen, L., Melin, M., Munezero, M., Sirén-Heikel, S., Södergård, C., & Toivonen, H.
    (2019) News Automation: The rewards, risks and realities of “machine journalism”. WAN-IFRA guide to the field. Reports / The World Association of Newspapers and News Publishers WAN-IFRA.
    [Google Scholar]
  19. Linell, P.
    (1998) Approaching dialogue. Talk, interaction and contexts in dialogical perspectives. Amsterdam: John Benjamins. 10.1075/impact.3
    https://doi.org/10.1075/impact.3 [Google Scholar]
  20. Luginbühl, M.
    (2014) Genre profiles and genre change: The case of TV news. InJ. Androutsopoulos (Ed.), Mediatization and Sociolinguistic Change (pp.305–330). Berlin, New York: de Gruyter. doi:  10.1515/9783110346831.305
    https://doi.org/10.1515/9783110346831.305 [Google Scholar]
  21. Martin, J. R.
    (1985) Process and text: two aspects of human semiosis. InJ. D. Benson, & W. S. Greaves (Eds.), Systemic perspectives on discourse (pp.248–274). Norwood, NJ: Ablex.
    [Google Scholar]
  22. Melin, M., Bäck, A., Södergård, C., Munezero, M., Leppänen, L., & Toivonen, H.
    (2018) No landslide for the human journalist. An empirical study of computer-generated election news in Finland. IEEE Access, 6, 43356–43367. doi:  10.1109/ACCESS.2018.2861987
    https://doi.org/10.1109/ACCESS.2018.2861987 [Google Scholar]
  23. Miller, C.
    (1984) Genre as social action. Quarterly Journal of Speech70(2), 151–167. doi:  10.1080/00335638409383686
    https://doi.org/10.1080/00335638409383686 [Google Scholar]
  24. Miller, C., & Shepherd, D.
    (2009) Questions for genre theory from the blogosphere. InJ. Giltrow (ed.), Genres in the Internet: Issues in the theory of genre (pp.264–286). Amsterdam: John Benjamins. 10.1075/pbns.188.11mil
    https://doi.org/10.1075/pbns.188.11mil [Google Scholar]
  25. Murphy, K. P.
    (2012) Machine learning: A probabilistic perspective. Cambridge, MA: The MIT press.
    [Google Scholar]
  26. Mäntynen, A., & Shore, S.
    (2014) What is meant by hybridity? An investigation of hybridity and related terms in genre studies. Text and talk, 34(6), 737–758. doi:  10.1515/text‑2014‑0022
    https://doi.org/10.1515/text-2014-0022 [Google Scholar]
  27. O’Neill, D., & Harcup, T.
    (2009) News values and selectivity. InWahl-Jorgensen, K. & Hanitzsch, T. (Eds.) Handbook of journalism studies (pp.161–174). New York, NY: Routledge.
    [Google Scholar]
  28. Pietikäinen, S., & Mäntynen, A.
    (2020) Uusi kurssi kohti diskurssia. Tampere: Vastapaino.
    [Google Scholar]
  29. Pöttker, H.
    (2003) News and its communicative quality: the inverted pyramid – when and why did it appear?Journalism Studies, 4(4), 501–511. doi:  10.1080/1461670032000136596
    https://doi.org/10.1080/1461670032000136596 [Google Scholar]
  30. Rosenberg, H., & Feldman, C. S.
    (2008) No time to think: The menace of media speed and the 24-hour news cycle. New York, NY: Continuum.
    [Google Scholar]
  31. Weaver, D. H., & Willnat, L.
    (Eds.) (2012) The global journalist in the 21st century. London: Routledge. 10.4324/9780203148679
    https://doi.org/10.4324/9780203148679 [Google Scholar]
  32. Wölker, A., & Powell, T. E.
    (2018) Algorithms in the newsroom? News readers’ perceived credibility and selection of automated journalism. Journalism. doi:  10.1177/1464884918757072
    https://doi.org/10.1177/1464884918757072 [Google Scholar]
  33. Zampa, M.
    (2017) Argumentation in the newsroom. Amsterdam: John Benjamins. 10.1075/aic.13
    https://doi.org/10.1075/aic.13 [Google Scholar]
  34. Sirén-Heikel, S., Leppänen, L., Lindén, C.-G., & Bäck, A.
    (2019) Unboxing news automation: Exploring imagined affordances of automation in news journalism. Nordic Journal of Media Studies1(1), 47–66. 10.2478/njms‑2019‑0004
    https://doi.org/10.2478/njms-2019-0004 [Google Scholar]
/content/journals/10.1075/aila.00030.haa
Loading
  • Article Type: Research Article
Keyword(s): genre; journalism; natural language generation; news automation; NLG
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error