1887
image of Beyond borders or building new walls?

Abstract

Abstract

Generative Artificial Intelligence (GenAI) has been offering unprecedented opportunities for language education. However, its capacity to embrace linguistic diversity, particularly for learners of dialect-rich languages like Vietnamese and Mandarin, remains underexamined. Without careful consideration, GenAI risks reinforcing language hegemonies, thereby contributing to the recolonization of language learning landscapes by marginalizing minority dialects in favour of preferred standards. Adopting sociolinguistics interview, this study explores GenAI’s (namely ChatGPT’s) ability to recognize and generate dialect-specific content in discussing several pre-determined questions in both Vietnamese dialects (i.e., Northern, Southern, and Central) and Mandarin varieties (i.e., Mainland Standard Mandarin, Taiwanese Mandarin, and Singaporean Mandarin). A multi-stage role prompt, focusing on the topic of food, was used for both Vietnamese dialects and Mandarin varieties to generate responses. Our study reveals major inconsistencies in the representation of Vietnamese dialects and Chinese varieties within AI-generated output, raising critical questions about generative AI’s role in perpetuating linguistic hierarchies. We conclude by emphasizing the need for tailored language learning approaches that leverage generative AI’s capabilities to not only accommodate but also celebrate the rich tapestry of global dialects and languages, ensuring equitable access to language education for all learners.

Available under the CC BY 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/aral.24135.tra
2025-01-07
2025-01-20
Loading full text...

Full text loading...

/deliver/fulltext/10.1075/aral.24135.tra/aral.24135.tra.html?itemId=/content/journals/10.1075/aral.24135.tra&mimeType=html&fmt=ahah

References

  1. Adeshola, I., & Adepoju, A. P.
    (2023) The opportunities and challenges of ChatGPT in education. Interactive Learning Environments, –. 10.1080/10494820.2023.2253858
    https://doi.org/10.1080/10494820.2023.2253858 [Google Scholar]
  2. Agarwal, P., Asif, A., Parida, S., Sekhar, S., Dash, S. R., & Panda, S.
    (2023) Generative Chatbot Adaptation for Odia Language: A Critical Evaluation. 2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS), –. 10.1109/CCPIS59145.2023.10291329
    https://doi.org/10.1109/CCPIS59145.2023.10291329 [Google Scholar]
  3. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S.
    (2021) On the dangers of stochastic parrots: Can language models be too big? 2021ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21), –. 10.1145/3442188.3445922
    https://doi.org/10.1145/3442188.3445922 [Google Scholar]
  4. Bickerton, D.
    (1975) Dynamics of a Creole System. Cambridge University Press.
    [Google Scholar]
  5. Brandist, C.
    (2015) The dimensions of hegemony: Language, culture and politics in revolutionary Russia (Vol.). Brill. 10.1163/9789004276796
    https://doi.org/10.1163/9789004276796 [Google Scholar]
  6. Chen, B., Zhang, Z., Langrené, N., & Zhu, S.
    (2023) Unleashing the potential of prompt engineering in Large Language Models: A comprehensive review. ArXiv.org. 10.48550/arxiv.2310.14735
    https://doi.org/10.48550/arxiv.2310.14735 [Google Scholar]
  7. Choudhury, M.
    (2023) Generative AI has a language problem. Nature Human Behaviour, , –. 10.1038/s41562‑023‑01716‑4
    https://doi.org/10.1038/s41562-023-01716-4 [Google Scholar]
  8. Cong-Lem, N., Soyoof, A., & Tsering, D.
    (2024) A Systematic review of the limitations and associated opportunities of ChatGPT. International Journal of Human-Computer Interaction. 10.1080/10447318.2024.2344142
    https://doi.org/10.1080/10447318.2024.2344142 [Google Scholar]
  9. DePalma, R., & Teasley, C.
    (2013) Constructing Spanish: discourses of language hegemony in Spain. InEducation, dominance and identity (pp.–). Brill. 10.1007/978‑94‑6209‑125‑2_7
    https://doi.org/10.1007/978-94-6209-125-2_7 [Google Scholar]
  10. Ekin, S.
    (2023) Prompt engineering for ChatGPT: a quick guide to techniques, tips, and best practices. Authorea Preprints.
    [Google Scholar]
  11. Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L.
    (2023) Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, (), –. 10.1080/15228053.2023.2233814
    https://doi.org/10.1080/15228053.2023.2233814 [Google Scholar]
  12. Haugen, E.
    (1972) The Ecology of Language: Essays by Einar Haugen. Stanford University Press.
    [Google Scholar]
  13. Hoffman, M.
    (2013) Sociolinguistic interviews. Research methods in sociolinguistics: A practical guide, –. 10.1002/9781394260867.ch2
    https://doi.org/10.1002/9781394260867.ch2 [Google Scholar]
  14. Huang, W., Hew, K. F., & Fryer, L. K.
    (2022) Chatbots for language learning-Are they really useful? A systematic review of chatbot-supported language learning. Journal of Computer Assisted Learning, (), –. 10.1111/jcal.12610
    https://doi.org/10.1111/jcal.12610 [Google Scholar]
  15. Javier, D. R. C., & Moorhouse, B. L.
    (2024) Developing secondary school English language learners’ productive and critical use of ChatGPT. TESOL Journal, (), n/a-n/a. 10.1002/tesj.755
    https://doi.org/10.1002/tesj.755 [Google Scholar]
  16. Jeon, J.
    (2023) Chatbot-assisted dynamic assessment (CA-DA) for L2 vocabulary learning and diagnosis. Computer Assisted Language Learning, (), –. 10.1080/09588221.2021.1987272
    https://doi.org/10.1080/09588221.2021.1987272 [Google Scholar]
  17. (2024) Exploring AI chatbot affordances in the EFL classroom: Young learners’ experiences and perspectives. Computer Assisted Language Learning, (), –. 10.1080/09588221.2021.2021241
    https://doi.org/10.1080/09588221.2021.2021241 [Google Scholar]
  18. Jeon, J., & Lee, S.
    (2023) Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies, (), –. 10.1007/s10639‑023‑11834‑1
    https://doi.org/10.1007/s10639-023-11834-1 [Google Scholar]
  19. Kachru, B. B.
    (1985) “Standards, codification and sociolinguistic realism: The English language in the Outer Circle.” InEnglish in the World: Teaching and Learning the Language and Literatures, edited byR. Quirk and H. Widdowson, –. Cambridge University Press.
    [Google Scholar]
  20. Karataş, F., Abedi, F. Y., Ozek Gunyel, F., Karadeniz, D., & Kuzgun, Y.
    (2024) Incorporating AI in foreign language education: An investigation into ChatGPT’s effect on foreign language learners. Education and Information Technologies. 10.1007/s10639‑024‑12574‑6
    https://doi.org/10.1007/s10639-024-12574-6 [Google Scholar]
  21. Khumalo, L.
    (2016) Disrupting language hegemony: Intellectualising African languages. InDisrupting higher education curriculum (pp.–). Brill. 10.1007/978‑94‑6300‑896‑9_15
    https://doi.org/10.1007/978-94-6300-896-9_15 [Google Scholar]
  22. Kim, S., Shim, J., & Shim, J.
    (2023) A Study on the Utilization of OpenAI ChatGPT as a Second Language Learning Tool. Journal of Multimedia Information System, (), –. 10.33851/JMIS.2023.10.1.79
    https://doi.org/10.33851/JMIS.2023.10.1.79 [Google Scholar]
  23. Kohnke, L., Moorhouse, B. L., & Zou, D.
    (2023) ChatGPT for language teaching and learning. RELC Journal, (), –. 10.1177/00336882231162868
    https://doi.org/10.1177/00336882231162868 [Google Scholar]
  24. Kostka, I., & Toncelli, R.
    (2023) Exploring applications of ChatGPT to English language teaching: Opportunities, challenges, and recommendations. TESL-EJ (Berkeley, Calif.), (), . 10.55593/ej.27107int
    https://doi.org/10.55593/ej.27107int [Google Scholar]
  25. Kuteeva, M., & Andersson, M.
    (2024) Diversity and Standards in Writing for Publication in the Age of AI-Between a Rock and a Hard Place. Applied Linguistics. 10.1093/applin/amae025
    https://doi.org/10.1093/applin/amae025 [Google Scholar]
  26. Labov, W.
    (1984) Field methods of the project on linguistic change and variation. InJ. Baugh & J. Sherzer (Eds.), Language in use: Readings in sociolinguistics (pp.–). Prentice-Hall.
    [Google Scholar]
  27. Le, X. T. T., McLeod, S., & Phạm, B.
    (2022) Consonant accuracy and intelligibility of Southern Vietnamese children. Speech, Language and Hearing, (), –. 10.1080/2050571X.2021.1888195
    https://doi.org/10.1080/2050571X.2021.1888195 [Google Scholar]
  28. Liu, Z., Patwary, M., Prenger, R., Prabhumoye, S., Wei, P., Shoeybi, M., & Catanzaro, B.
    (2022) Multi-Stage Prompting for Knowledgeable Dialogue Generation. arXiv (Cornell University). 10.18653/v1/2022.findings‑acl.104
    https://doi.org/10.18653/v1/2022.findings-acl.104 [Google Scholar]
  29. Lippi-Green, R.
    (1994) Accent, standard language ideology, and discriminatory pretext in the courts. Language in Society, , –. 10.1017/S0047404500017826
    https://doi.org/10.1017/S0047404500017826 [Google Scholar]
  30. Lo, C. K.
    (2023) What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, (), . 10.3390/educsci13040410
    https://doi.org/10.3390/educsci13040410 [Google Scholar]
  31. Lüqiu, L. R.
    (2018) Counter-hegemony: grassroots use of the Internet to save dialects in China. Journal of Multilingual and Multicultural Development, (), –. 10.1080/01434632.2017.1422738
    https://doi.org/10.1080/01434632.2017.1422738 [Google Scholar]
  32. McKinney, E., & Hoggan, C.
    (2022) Language, identity, & social equity: Educational responses to dialect hegemony. International Journal of Lifelong Education, (), –. 10.1080/02601370.2022.2083249
    https://doi.org/10.1080/02601370.2022.2083249 [Google Scholar]
  33. Meyer, J. G., Urbanowicz, R. J., Martin, P. C. N., O’Connor, K., Li, R., Peng, P. C., Bright, T. J., Tatonetti, N., Won, K. J., Gonzalez-Hernandez, G., & Moore, J. H.
    (2023) ChatGPT and large language models in academia: Opportunities and challenges. BioData Mining, (), –. 10.1186/s13040‑023‑00339‑9
    https://doi.org/10.1186/s13040-023-00339-9 [Google Scholar]
  34. Moorhouse, B. L., & Kohnke, L.
    (2024) The effects of generative AI on initial language teacher education: The perceptions of teacher educators. System (Linköping), . 10.1016/j.system.2024.103290
    https://doi.org/10.1016/j.system.2024.103290 [Google Scholar]
  35. Pack, A., & Maloney, J.
    (2023) Using Generative Artificial Intelligence for language education research: Insights from using OpenAI’s ChatGPT. TESOL Quarterly, (), –. 10.1002/tesq.3253
    https://doi.org/10.1002/tesq.3253 [Google Scholar]
  36. Pham, V. H.
    (2009) Từ điển phương ngữ tiếng Việt. [Vietnamese dialects Dictionary]. Khoa học xã hội.
    [Google Scholar]
  37. Pizarro Pedraza, A.
    (2016) Pragmemes in the Sociolinguistic Interview: A Case Study on expanded polar answers. InPragmemes and Theories of Language Use (Vol., pp.–). Springer International Publishing. 10.1007/978‑3‑319‑43491‑9_19
    https://doi.org/10.1007/978-3-319-43491-9_19 [Google Scholar]
  38. Randall, N.
    (2019) A survey of robot-assisted language learning (RALL). ACM Transactions on Human-Robot Interaction (THRI), (), –.
    [Google Scholar]
  39. Seghier, M. L.
    (2023) ChatGPT: Not all languages are equal. Nature, (), –. 10.1038/d41586‑023‑00680‑3
    https://doi.org/10.1038/d41586-023-00680-3 [Google Scholar]
  40. Shang, G., & Zhao, S.
    (2017) Standardising the Chinese language in Singapore: Issues of policy and practice. Journal of Multilingual and Multicultural Development, (), –. 10.1080/01434632.2016.1201091
    https://doi.org/10.1080/01434632.2016.1201091 [Google Scholar]
  41. Smith, G., Fleisig, E., Bossi, M., Rustagi, I., & Yin, X.
    (2024) Standard language ideology in AI-Generated language. arXiv.org. 10.48550/arxiv.2406.08726
    https://doi.org/10.48550/arxiv.2406.08726 [Google Scholar]
  42. Suarez, D.
    (2002) The Paradox of Linguistic Hegemony and the maintenance of Spanish as a heritage language in the United States. Journal of Multilingual and Multicultural Development, (), –. 10.1080/01434630208666483
    https://doi.org/10.1080/01434630208666483 [Google Scholar]
  43. Valverde-Berrocoso, J., Gonzalez-Fernandez, A., & Acevedo-Borrega, J.
    (2022) Disinformation and multiliteracy: A systematic review of the literature. Comunicar, (), –. 10.3916/C70‑2022‑08
    https://doi.org/10.3916/C70-2022-08 [Google Scholar]
  44. Wang, X., Liu, Q., Pang, H., Tan, S. C., Lei, J., Wallace, M. P., & Li, L.
    (2023) What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers and Education, , 104703. 10.1016/j.compedu.2022.104703
    https://doi.org/10.1016/j.compedu.2022.104703 [Google Scholar]
  45. Yang, L., & Li, R.
    (2024) ChatGPT for L2 learning: Current status and implications. System, , 103351. 10.1016/j.system.2024.103351
    https://doi.org/10.1016/j.system.2024.103351 [Google Scholar]
  46. Zhang, X., & Guo, Z.
    (2012) Hegemony and counter-hegemony: The politics of dialects in TV programs in China. Chinese Journal of Communication, (), –. 10.1080/17544750.2012.701421
    https://doi.org/10.1080/17544750.2012.701421 [Google Scholar]
/content/journals/10.1075/aral.24135.tra
Loading
/content/journals/10.1075/aral.24135.tra
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error