1887
Volume 39, Issue 1
  • ISSN 0929-7332
  • E-ISSN: 1569-9919
USD
Buy:$35.00 + Taxes

Abstract

Abstract

In this paper, we investigate whether non-native speakers of Dutch use the interpersonal discourse particle differently than native speakers of Dutch. Particles such as are considered to be very difficult to learn for non-native speakers. might be even more difficult to learn than other particles, because of its complex effect on the discourse. We tested whether non-native speakers of Dutch used differently than native speakers of Dutch by means of an online cloze test in which native speakers (control group,  = 109) and non-native speakers ( = 73) had to choose between and an adverb in a variety of contexts. Results indicated that non-native speakers used differently than native speakers, but non-native speakers did somewhat understand that marks a contrast with a contextually raised expectation. Moreover, more proficient native speakers were more similar to native speakers in their use of than less proficient native speakers.

Loading

Article metrics loading...

/content/journals/10.1075/avt.00068.ros
2022-11-04
2022-12-08
Loading full text...

Full text loading...

References

  1. Bates, Douglas, Martin Maechler, Ben Bolker & Steve Walker
    2015 “Fitting Linear Mixed-Effects Models Using lme4”. Journal of Statistical Software, 67 (1): 1–48. 10.18637/jss.v067.i01
    https://doi.org/10.18637/jss.v067.i01 [Google Scholar]
  2. van Bergen, Geertje & Hans R. Bosker
    2018 “Linguistic expectation management in online discourse processing: An investigation of Dutch inderdaad ‘indeed’ and eigenlijk ‘actually’.” Journal of Memory and Language1031: 191–209. 10.1016/j.jml.2018.08.004
    https://doi.org/10.1016/j.jml.2018.08.004 [Google Scholar]
  3. van Bergen, Geertje, Rik Van Gijn, Lotte Hogeweg & Sander Lestrade
    2011 “Discourse marking and the subtle art of mind reading: the case of Dutch eigenlijk.” Journal of Pragmatics431: 3877–3892. 10.1016/j.pragma.2011.10.001
    https://doi.org/10.1016/j.pragma.2011.10.001 [Google Scholar]
  4. van Bergen, Geertje & Lotte Hogeweg
    2021 “Managing interpersonal discourse expectations: A comparative analysis of contrastive discourse particles in Dutch.” Linguistics59 (2): 333–360. 10.1515/ling‑2021‑0020
    https://doi.org/10.1515/ling-2021-0020 [Google Scholar]
  5. Buysse, Lieven
    2012 “‘So’ as a multifunctional discourse marker in native and learner speech.” Journal of Pragmatics44 (13): 1764–1782. 10.1016/j.pragma.2012.08.012
    https://doi.org/10.1016/j.pragma.2012.08.012 [Google Scholar]
  6. Council of Europe
    Council of Europe 2001Common European Framework of Reference for Languages: Learning, teaching, assessment. Cambridge, U.K: Press syndicate of the university of Cambridge [e-book].
    [Google Scholar]
  7. CGN
    CGN 2006 Corpus Gesproken Nederlands, version 2.0. lands.let.ru.nl/cgn/home.htm.
  8. Diewald, Gabriele
    2013 “Same same but different.” Modal particles, discourse markers and the art (and purpose) of categorization.” In: Liesbeth Degand, Bert Cornillie and Paola Pietrandrea. (eds.), Discourse Markers and Modal Particles: Categorization and Description, 19–46. Amsterdam/Philadelphia: John Benjamins. 10.1075/pbns.234.02die
    https://doi.org/10.1075/pbns.234.02die [Google Scholar]
  9. Diskin, Chloé
    2017 “The use of the discourse-pragmatic marker ‘like’ by native and non-native speakers of English in Ireland”. Journal of Pragmatics1201: 144–157. 10.1016/j.pragma.2017.08.004
    https://doi.org/10.1016/j.pragma.2017.08.004 [Google Scholar]
  10. Foolen, Ad
    2010 “Partikels volgens de schijf van vijf.” Internationale Neerlandistiek, 48 (2): 41–51. 10.5117/IVN2010.2.FOOL
    https://doi.org/10.5117/IVN2010.2.FOOL [Google Scholar]
  11. Fox, John
    2003 “Effect Displays in R for Generalised Linear Models.” Journal of Statistical Software8 (15): 1–27. 10.18637/jss.v008.i15
    https://doi.org/10.18637/jss.v008.i15 [Google Scholar]
  12. Fox Tree, Jean E.
    2010 “Discourse Markers across Speakers and Settings.” Language and Linguistics Compass4 (5): 269–281. 10.1111/j.1749‑818X.2010.00195.x
    https://doi.org/10.1111/j.1749-818X.2010.00195.x [Google Scholar]
  13. Hogeweg, Lotte, Helen de Hoop, Stefanie Ramachers, Frans van der Slik Verena & Wottrich
    2016 “The L2-acquisition of the German particle doch”. International Review of Applied Linguistics in Language Teaching54 (3): 201–227. 10.1515/iral‑2016‑9981
    https://doi.org/10.1515/iral-2016-9981 [Google Scholar]
  14. Kuznetsova, Alexandra, Per B. Brockhoff, Rune H. B. Christensen
    2017 “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software, 82 (13): 1–26. 10.18637/jss.v082.i13
    https://doi.org/10.18637/jss.v082.i13 [Google Scholar]
  15. R Core Team
    R Core Team 2017R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/
    [Google Scholar]
  16. Rasenberg, Marlou, Joost Rommers & Geertje van Bergen
    2020 “Anticipating predictability: an ERP investigation of expectation-managing discourse markers in dialogue comprehension.” Language, Cognition, and Neuroscience35 (1): 1–16. 10.1080/23273798.2019.1624789
    https://doi.org/10.1080/23273798.2019.1624789 [Google Scholar]
  17. Schmidt, Christoph
    2020 “Een afscheidsbrief aan de Britten: Lief Verenigd Koninkrijk”. Trouw, January 31, Retrieved fromhttps://www.trouw.nl/
    [Google Scholar]
  18. Tsai, Pei-Shu & Wo-Hsin Chu
    2017 “The use of discourse markers among Mandarin Chinese teachers, and Chinese as a second language and Chinese as a foreign language learners.” Applied Linguistics38 (5): 638–665. 10.1093/applin/amv057
    https://doi.org/10.1093/applin/amv057 [Google Scholar]
  19. UCLA and Statistical Consulting Group
    UCLA and Statistical Consulting Group 2011R Library Contrast Coding Systems for Categorical Variables. Available at: https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/#SIMPLE (accessedJuly 29, 2019).
    [Google Scholar]
  20. Wickham, Hadley
    2016ggplot2: Elegant Graphics for Data Analysis. Springer-VerlagNew York 2016 10.1007/978‑3‑319‑24277‑4
    https://doi.org/10.1007/978-3-319-24277-4 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/avt.00068.ros
Loading
/content/journals/10.1075/avt.00068.ros
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error