1887
Volume 66, Issue 2
  • ISSN 0521-9744
  • E-ISSN: 1569-9668
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The translation of handwritten historical documents faces many challenges due to variation in the writing style, local language, and an inevitable language change. Even the transliteration from Cyrillic to Latin characters is standardized by the bijective transliteration standard ISO 9. This presentation introduces a number of tools offered by Transkribus for the automated processing of documents, such as Handwritten Text Recognition (HTR) and Document Understanding, which are needed for the translation of historical documents. Next to the problem of decoding handwritten documents, written for example in Kurrentschrift using ancient terminology, changed meanings and different spelling have additionally to be considered during the translation of texts from earlier centuries. Resolution strategies on a case study show different methods for ensuring quality translations.

Loading

Article metrics loading...

/content/journals/10.1075/babel.00159.vuk
2020-04-07
2024-10-07
Loading full text...

Full text loading...

References

  1. Alvermann, Dirk; and Blüggel, Bruno
    2017 “Transkribus at Greifswald. Idea, practice, results, perspective”. https://read.transkribus.eu/wp-content/uploads/2017/07/Alvermann_Bluegel_Greifswald.pdf
  2. Beuth publishing DIN, Translation Services – Requirements for translation services (ISO 17100:2015); German version EN ISO 17100:2015
    Beuth publishing DIN, Translation Services – Requirements for translation services (ISO 17100:2015); German version EN ISO 17100:2015 201610.31030/2401369
    https://doi.org/10.31030/2401369
  3. Boenig, Matthias;
    2018 “Ground Truth: Grundwahrheit oder Ad-Hoc-Lösung? Wo stehen die DigitalHumanities?” InKritik der digitalen Vernunft, ed. byGeorg Vogeler. 219–223. Köln: Universität Köln. dhd2018.uni-koeln.de/
    [Google Scholar]
  4. Cheong, Otfried: Han Unification in Unicode
    . 12. Oktober 1999, archived from the original on28. March 2010; retrieved on7. November 2015 (English). https://web.archive.org/web/20100328042929/http:/tclab.kaist.ac.kr/~otfried/Mule/uni​han.html
  5. Dalbir, Sanjiv Kumar Singh
    2015 “Review of Online & Offline Character Recognition”. International Journal Of Engineering And Computer Science4 (5): 11729–11732.
    [Google Scholar]
  6. Fiel, Stefan; and Florian Kleber;
    2018 “READ ABP WI Dataset – Writer Identification over decades”. [Data set].Zenodo. doi:  10.5281/zenodo.1421600
    https://doi.org/10.5281/zenodo.1421600 [Google Scholar]
  7. Fronhöfer, Andrea; and Elena Mühlbauer
    2017 “Archivnutzung ohne Limit. Digitalisierung, Onlinestellung und das Projekt READ für barrierefreies Forschen”. Der Archivar, Zeitschrift für Archivwesen70 (4): 422–7.
    [Google Scholar]
  8. Graves, Alex; and Jürgen Schmidhuber
    2009 “Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks”. InAdvances in Neural Information Processing Systems 22 (NIPS’22), December 7th–10th, 2009, Vancouver, BC, ed. byBengio, Yoshua; , 545–552, San Diego: NIPS.
    [Google Scholar]
  9. Jankov, Dragomir
    2007Vojvodina. Propadanje jednog regiona. Podaci i činjenice. Novi Sad: CPO, Centar za političko obrazovanje: Zrenjanin: Gradska narodna biblioteka “Žarko Zrenjnin”.
    [Google Scholar]
  10. Jerkov, Aleksandar; and Adam Sofronijević
    2017 “University of Belgrade library. Transkribus User Experience”. https://read.transkribus.eu/wp-content/uploads/2017/07/Jerkov_Uni_Belgrade_library.pdf
  11. Jerkov, Aleksandar; Sofronijević, Adam; and Dejana Kavaja Stanišić
    2015 “Smart and Sustainable Library: Information Literacy Hub of a New City”. InInformation Literacy: Movin Toward Sustainability, ed. byKurbanoğlu, Serap; and Joumana Boustany; 22–30. Basel: Springer. 10.1007/978‑3‑319‑28197‑1_3
    https://doi.org/10.1007/978-3-319-28197-1_3 [Google Scholar]
  12. Laloš, Vesela
    2005 “Bela Crkva, gradić sa četiri imena i nemačkim nasleđem. Tragovi baroknog sjaja provincijalne panonske varoši”. Fenster. Poverenje, pomirenje, poštenje (3): 54–55.
    [Google Scholar]
  13. Lukić, Anton N.
    2002Inđija = Indigena, zapisi i predanja, Ruma: Narodna biblioteka “Đorđe Natošević”.
    [Google Scholar]
  14. Peco, Asim
    1990Do Vuka i od Vuka. Nikšić: Univerzitetska riječ.
    [Google Scholar]
  15. Поповић, Радомир Ј.
    2014 “Срби из јужне Угарске и обнова нововековне српске државе у првој половини 19. века”. Летопис Матице српске493 (6): 866–882.
    [Google Scholar]
  16. Schneider, Karin
    2014Paläographie und Handschriftenkunde für Germanisten: Eine Einführung. Berlin: Walter de Gruyter. 10.1515/9783110338676
    https://doi.org/10.1515/9783110338676 [Google Scholar]
  17. Tappert, C. C.; Suen, C. Y.; Wakahara, T.
    1990 “The state of the art in online handwriting recognition”. IEEE Transactions on Pattern Analysis and Machine Intelligence12 (8): 787. doi:  10.1109/34.57669
    https://doi.org/10.1109/34.57669 [Google Scholar]
  18. The Unicode Standard
  19. Vukčević, Miodrag M.
    2004 “Serbisch-deutsche Sprachenkontakte. Oder zu den Fragen über sprachliche und kulturelle Grenzen”. Nasleđe. Časopis za književnost i kulturuI (2): 93–101.
    [Google Scholar]
  20. Zagoris, Konstantimos; Pratikakis, Ioannis; and Basilis Gatos
    2017 “Unsupervised Word Spotting in Historical Handwritten Document Images Using Document-Oriented Local Features”. IEEE Transactions on Image Processing26 (8): 4032–4041. 10.1109/TIP.2017.2700721
    https://doi.org/10.1109/TIP.2017.2700721 [Google Scholar]
/content/journals/10.1075/babel.00159.vuk
Loading
/content/journals/10.1075/babel.00159.vuk
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error