Bochumer Philosophisches Jahrbuch für Antike und Mittelalter: Band 13. 2008
  • ISSN 1384-6663
  • E-ISSN: 1569-9684
Buy:$35.00 + Taxes


On the unity of modal syllogistics in Aristotle. The goal of this paper is an interpretation of Aristotle’s modal syllogistics closely oriented on the text using the resources of modern modal predicate logic. Modern predicate logic was successfully able to interpret Aristotle’s assertoric syllogistics uniformly, that is, with one formula for universal premises. A corresponding uniform interpretation of modal syllogistics by means of modal predicate logic is not possible. This thesis does not imply that a uniform view is abandoned. However, it replaces the simple unity of the assertoric by the complex unity of the modal. The complexity results from the fact that though one formula for universal premises is used as the basis, it must be moderated if the text requires.Aristotle introduces his modal syllogistics by expanding his assertoric syllogistics with an axiom that links two apodictic premises to yield a single apodictic sentence. He thus defines a regular modern modal logic. By means of the regular modal logic that is thus defined, he is able to reduce the purely apodictic syllogistics to assertoric syllogistics. However, he goes beyond this simple structure when he looks at complicated inferences.In order to be able to link not only premises of the same modality, but also premises with different modalities, he introduces a second axiom, the T-axiom, which infers from necessity to reality or – equivalently – from reality to possibility. Together, the two axioms, the axiom of regularity and the T-axiom, define a regular T-logic. It plays an important role in modern logic. In order to be able to account for modal syllogistics adequately as a whole, another modern axiom is also required, the so-called B-axiom. It is very difficult to decide whether Aristotle had the B-axiom. Each of the two last named axioms is sufficient to achieve the required contextual moderation of the basic formula for universal propositions.


Article metrics loading...

Loading full text...

Full text loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error