1887
Volume 8, Issue 2
  • ISSN 2213-8722
  • E-ISSN: 2213-8730
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The working environment of translators has changed significantly in recent decades, with post-editing (PE) emerging as a new trend in the human translation workflow, particularly following the advent of neural machine translation (NMT) and the improvement of the quality of the machine translation (MT) raw output especially at the level of fluency. In addition, the directionality axiom is increasingly being questioned with translators working from and into their first language both in the context of translation (Buchweitz and Alves 2006Pavlović and Jensen 2009Fonseca and Barbosa 2015Hunziker Heeb 2015Ferreira 20132014Ferreira et al. 2016Feng 2017) and in the context of PE (Garcia 2011Sánchez-Gijón and Torres-Hostench 2014da Silva et al. 2017Toledo Báez 2018). In this study we employ product- and process-oriented approaches to investigate directionality in PE in the English-Greek language pair. In particular, we compare the cognitive, temporal, and technical effort expended by translators for the full PE of NMT output in L1 (Greek) with the effort required for the full PE of NMT output in L2 (English), while we also analyze the quality of the final translation product. Our findings reveal that PE in L2, i.e., inverse PE, is less demanding than PE in L1, i.e., direct PE, in terms of the time and keystrokes required, and the cognitive load exerted on translators. Finally, our research shows that directionality does not imply differences in quality.

Loading

Article metrics loading...

/content/journals/10.1075/cogls.00083.sta
2021-11-22
2022-05-23
Loading full text...

Full text loading...

References

  1. Akbari, A., & Segers, W.
    (2017) Translation difficulty: How to measure and what to measure. Lebende Sprachen, 62(1), 3–29. 10.1515/les‑2017‑0002
    https://doi.org/10.1515/les-2017-0002 [Google Scholar]
  2. Alves, F., Pagano, A., Neumann, S., Steiner, E., & Hansen-Schirra, S.
    (2010) Translation units and grammatical shifts: Towards an integration of product- and process-based translation research. InG. M. Shreve & E. Angelone (Eds.), Translation and cognition (pp.109–142). Amsterdam: John Benjamins. 10.1075/ata.xv.07alv
    https://doi.org/10.1075/ata.xv.07alv [Google Scholar]
  3. Beeby, L. A.
    (2001) Direction of translation (directionality). InM. Baker (Ed.), Routledge encyclopedia of translation studies (pp.63–67). London: Routledge.
    [Google Scholar]
  4. Blum-Kulka, S.
    (2000) Shifts of cohesion and coherence in translation. InL. Venuti (Ed.), The translation studies reader (pp.298–312). London: Routledge.
    [Google Scholar]
  5. Buchweitz, A., & Alves, F.
    (2006) Cognitive adaptation in translation: an interface between language direction, time, and recursiveness in target text production. Letras de Hoje, 41(2), 241–272.
    [Google Scholar]
  6. Campbell, S.
    (1998) Translation into the second language. London: Longman.
    [Google Scholar]
  7. Carl, M.
    (2012) Translog–II: A program for recording user activity data for empirical reading and writing research. InProceedings of the 8th international conference on language resources and evaluation (LREC’12) (pp.4108–4112). Istanbul: European Language Resources Association (ELRA).
    [Google Scholar]
  8. Carl, M., & Buch-Kromann, M.
    (2010) Correlating translation product and translation process data of professional and student translators. InF. Yvon & V. Hansen (Eds.), Proceedings of the 14th annual conference of the European Association for Machine Translation (n.p.). Saint-Raphaël, France: European Association for Machine Translation.
    [Google Scholar]
  9. Carl, M., Dragsted, B., Elming, J., Hardt, D., & Jakobsen, A. L.
    (2011) The process of post-editing: a pilot study. Copenhagen Studies in Language, 41, 131–142.
    [Google Scholar]
  10. Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A.
    (2017a) Is neural machine translation the new state of the art?The Prague Bulletin of Mathematical Linguistics, 108(1), 109–120. 10.1515/pralin‑2017‑0013
    https://doi.org/10.1515/pralin-2017-0013 [Google Scholar]
  11. Castilho, S., Moorkens, J., Gaspari, F., Sennrich, R., Sosoni, V., Georgakopoulou, Y., Lohar, P., Way, A., Miceli Barone, A., & Gialama, M.
    (2017b) A Comparative quality evaluation of PBSMT and NMT using professional translators. InProceedings of machine translation summit XVI (pp.116–131). Nagoya, Japan.
    [Google Scholar]
  12. Cohen, J.
    (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. 10.1177/001316446002000104
    https://doi.org/10.1177/001316446002000104 [Google Scholar]
  13. Conklin, K., Pellicer-Sánchez, A., & Carrol, G.
    (2018) Eye-tracking: A guide for applied linguistics research. Cambridge: Cambridge University Press. 10.1017/9781108233279
    https://doi.org/10.1017/9781108233279 [Google Scholar]
  14. Da Silva, I. A. L., Alves, F., Schmaltz, M., Pagano, A., Wong, D., Chao, L., Leal, A. L., Quaresma, P., Garcia, C., & Da Silva, G. E.
    (2017) Translation, post-editing and directionality: A study of effort in the Chinese-Portuguese language pair. InA. L. Jakobsen & B. Mesa-Lao (Eds.), Translation in transition. Between cognition, computing and technology (pp.108–134). Amsterdam: John Benjamins. 10.1075/btl.133.04lou
    https://doi.org/10.1075/btl.133.04lou [Google Scholar]
  15. Daems, J., Vandepitte, S., Hartsuiker, R. J., & Macken, L.
    (2017) Identifying the machine translation error types with the greatest impact on post-editing effort. Frontiers in Psychology, 8, 1282. 10.3389/fpsyg.2017.01282
    https://doi.org/10.3389/fpsyg.2017.01282 [Google Scholar]
  16. De Almeida, G.
    (2013) Translating the post-editor: An investigation of post-editing changes and correlations with professional experience across two romance languages. (Unpublished doctoral dissertation, Dublin City University). Retrieved fromdoras.dcu.ie/17732/1/THESIS_G_de_Almeida.pdf
  17. Densmer, L.
    (2014, August19). Light and full MT post-editing explained [RWS Moravia blog]. Retrieved fromhttps://www.rws.com/insights/rws-moravia-blog/bid-353532-Light-and-Full-MT-Post-Editing-Explained/
  18. Depraetere, I.
    (2010) What counts as useful advice in a university post-editing training context? Report on a case study. InF. Yvon & V. Hansen (Eds.), Proceedings of the 14th annual conference of the European Association for Machine Translation (n.p.). Saint-Raphaël, France: European Association for Machine Translation.
    [Google Scholar]
  19. Do Carmo, F.
    (2019) Edit distances do not describe editing, but they can be useful for translation process research. InM. Carl & S. Hansen-Schirra (Eds.), Proceedings of the 2nd MEMENTO workshop on Modelling Parameters of Cognitive Effort in Translation Production (pp.1–2). Dublin, Ireland: European Association for Machine Translation.
    [Google Scholar]
  20. Dodds, J. M.
    (1999) Friends, false friends and foes or back to basics in L1 to L2 translation. InG. Anderman & M. Rogers (Eds.), Word, text, translation: Liber Amicorum for Peter Newmark (pp.56–65). Clevedon: Multilingual.
    [Google Scholar]
  21. Doherty, S., & Kenny, D.
    (2014) The design and evaluation of a statistical machine translation syllabus for translation students. The Interpreter and Translator Trainer, 8(2), 295–315. 10.1080/1750399X.2014.937571
    https://doi.org/10.1080/1750399X.2014.937571 [Google Scholar]
  22. Doherty, S., Kenny, D., & Way, A.
    (2012) Taking statistical machine translation to the student translator. InProceedings of the tenth biennial conference of the Association for Machine Translation in the Americas (n.p.). San Diego, USA: Association for Machine Translation in the Americas.
    [Google Scholar]
  23. Doherty, S., O’Brien, S., & Carl, M.
    (2010) Eye tracking as an automatic MT evaluation technique. Machine Translation, 24(1), 1–13. 10.1007/s10590‑010‑9070‑9
    https://doi.org/10.1007/s10590-010-9070-9 [Google Scholar]
  24. Elming, J., Balling, L. W., & Carl, M.
    (2014) Investigating user behaviour in post-editing and translation using the CASMACAT workbench. InS. O’Brien, L. Winther Balling, M. Carl, M. Simard & L. Specia (Eds.), Post-editing of machine translation (pp.147–169). Newcastle: Cambridge Scholars Publishing.
    [Google Scholar]
  25. Feng, J.
    (2017) Comparing cognitive load in L1 and L2 translation: Evidence from eye-tracking. Foreign Languages in China (《中国外语》), 78, 79–91.
    [Google Scholar]
  26. Ferreira, A.
    (2013) Direcionalidade em tradução: O papel da subcompetência bilíngue em tarefas de tradução L1 e L2. (Unpublished doctoral dissertation, Federal University of Minas Gerais). Retrieved fromhttps://repositorio.ufmg.br/handle/1843/MGSS-9BLN48
  27. (2014) Analyzing recursiveness patterns and retrospective protocols of professional translators in L1 and L2 translation tasks. Translation and Interpreting Studies, 9(1), 109–127. 10.1075/tis.9.1.06fer
    https://doi.org/10.1075/tis.9.1.06fer [Google Scholar]
  28. Ferreira, A., & Schwieter, J. W.
    (2017) Directionality in translation. InJ. W. Schwieter & A. Ferreira (Eds.), The handbook of translation and cognition (pp.90–105). Hoboken, NJ: Wiley-Blackwell. 10.1002/9781119241485.ch5
    https://doi.org/10.1002/9781119241485.ch5 [Google Scholar]
  29. Ferreira, A., Schwieter, J. W., Gottardo, A., & Jones, J.
    (2016) Cognitive effort in direct and inverse translation performance: insight from eye-tracking technology. Cadernos de Tradução, 36(3), 60–80. 10.5007/2175‑7968.2016v36n3p60
    https://doi.org/10.5007/2175-7968.2016v36n3p60 [Google Scholar]
  30. Firbas, J.
    (1992) Functional sentence perspective in written and spoken communication (Studies in English Language). Cambridge: Cambridge University Press. 10.1017/CBO9780511597817
    https://doi.org/10.1017/CBO9780511597817 [Google Scholar]
  31. Flanagan, M., & Christensen, T. P.
    (2014) Testing post-editing guidelines: how translation trainees interpret them and how to tailor them for translator training purposes. The Interpreter and Translator Trainer, 8(2), 257–275. 10.1080/1750399X.2014.936111
    https://doi.org/10.1080/1750399X.2014.936111 [Google Scholar]
  32. Fonseca, D. L., & Barbosa, N.
    (2015) Directionality in translation: Investigating prototypical patterns in editing procedures. Translation & Interpreting, 7(1), 111–125.
    [Google Scholar]
  33. Fridman, L., Langhans, P., Lee, J., & Reimer, B.
    (2016) Driver gaze region estimation without use of eye movement. IEEE Intelligent Systems, 31(3), 49–56. 10.1109/MIS.2016.47
    https://doi.org/10.1109/MIS.2016.47 [Google Scholar]
  34. Garcia, I.
    (2011) Translating by post-editing: is it the way forward?Machine Translation, 25(3), 217–237. 10.1007/s10590‑011‑9115‑8
    https://doi.org/10.1007/s10590-011-9115-8 [Google Scholar]
  35. García-Yebra, V.
    (1983) En torno a la traducción: Teoría, crítica, historia. Madrid: Gredos.
    [Google Scholar]
  36. Gouadec, D.
    (2007) Translator as a profession. Amsterdam: John Benjamins. 10.1075/btl.73
    https://doi.org/10.1075/btl.73 [Google Scholar]
  37. Grosman, M., Kadrič, M., Kovačič, I., & Snell-Hornby, M.
    (Eds.) (2000) Translation into non-mother tongues in professional practice and training. Tübingen: Stauffenburg.
    [Google Scholar]
  38. Guerberof, A., & Moorkens, J.
    (2019) Machine translation and post-editing training as part of a master’s programme. Jostrans: The Journal of Specialised Translation, 31, 217–238.
    [Google Scholar]
  39. Halverson, S. L.
    (2017) Multimethod approaches. InJ. W. Schwieter & A. Ferreira (Eds.), The handbook of translation and cognition (pp.195–212). Hoboken, NJ: Wiley-Blackwell. 10.1002/9781119241485.ch11
    https://doi.org/10.1002/9781119241485.ch11 [Google Scholar]
  40. Hu, K., & Cadwell, P.
    (2016) A comparative study of post-editing guidelines. Baltic Journal of Modern Computing, 4(2), 346–353.
    [Google Scholar]
  41. Hunziker Heeb, A.
    (2015) Does professional translation into L2 involve more effort than into L1?InTranslation Process Research: Workshop 4 (n.p.). Las Palmas, Spain.
    [Google Scholar]
  42. Hvelplund, K. T.
    (2011) Allocation of cognitive resources in translation: An eye-tracking and key-logging study. (Doctoral dissertation, Copenhagen Business School). Frederiksberg: Samfundslitteratur.
  43. Jia, Y., Carl, M., & Wang, X.
    (2019) Post-editing neural machine translation versus phrase-based machine translation for English-Chinese. Machine Translation, 33(1–2), 9–29. 10.1007/s10590‑019‑09229‑6
    https://doi.org/10.1007/s10590-019-09229-6 [Google Scholar]
  44. Kenny, D., & Doherty, S.
    (2014) Statistical machine translation in the translation curriculum: Overcoming obstacles and empowering translators. The Interpreter and Translator Trainer, 8(2), 276–294. 10.1080/1750399X.2014.936112
    https://doi.org/10.1080/1750399X.2014.936112 [Google Scholar]
  45. Koponen, M.
    (2012) Comparing human perceptions of post-editing effort with post-editing operations. InProceedings of the seventh workshop on statistical machine translation (pp.181–190). Montréal, Canada: Association for Computational Linguistics.
    [Google Scholar]
  46. (2015) How to teach machine translation post-editing? Experiences from a post-editing course. InS. O’Brien & M. Simard (Eds.), Proceedings of the 4th workshop on post-editing technology and practice (WPTP4) (pp.2–15). Miami, FA: Association for Machine Translation in the Americas.
    [Google Scholar]
  47. Koponen, M., & Salmi, L.
    (2017) Post-editing quality: Analysing the correctness and necessity of post-editor corrections. Linguistica Antverpiensia, New Series: Themes in Translation Studies, 16, 137–148.
    [Google Scholar]
  48. Koponen, M., Salmi, L., & Nikulin, M.
    (2019) A product and process analysis of post-editor corrections on neural, statistical and rule-based machine translation output. Machine Translation, 33, 61–90. 10.1007/s10590‑019‑09228‑7
    https://doi.org/10.1007/s10590-019-09228-7 [Google Scholar]
  49. Krings, Η.
    (2001) Repairing texts: Empirical investigations of machine translation post-editing processes. Kent, OH: Kent State University Press.
    [Google Scholar]
  50. Lacruz, I., & Shreve, G. M.
    (2014) Pauses and cognitive effort in post-editing. InS. O’Brien, L. Winther Balling, M. Carl, M. Simard, & L. Specia (Eds.), Post-editing of machine translation (pp.246–272). Newcastle: Cambridge Scholars Publishing.
    [Google Scholar]
  51. Ladmiral, J. R.
    (1979) Théorèmes pour la Traduction. Paris: Didier.
    [Google Scholar]
  52. Lavie, A., & Agarwal, A.
    (2007) METEOR: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments. InProceedings of the Second Workshop on Statistical Machine Translation. Association for Computational Linguistics (pp.228–231). Prague, Czech Republic: Association for Computational Linguistics. 10.3115/1626355.1626389
    https://doi.org/10.3115/1626355.1626389 [Google Scholar]
  53. Massardo, I., van der Meer, J., O’Brien, S., Hollowood, F., Aranberri, N., & Drescher, K.
    (2016) MT post-editing guidelines. The Netherlands: TAUS Signature Editions.
    [Google Scholar]
  54. Mesa-Lao, B.
    (2012) The next generation translator’s workbench: post-editing in CASMACAT v. 1.0. InProceedings of the 34th Translating and the Computer Conference (n.p.). London, UK: ASLIB
    [Google Scholar]
  55. (2014) Gaze behaviour on source texts: An exploratory study comparing translation and post-editing. InS. O’Brien, L. Winther Balling, M. Carl, M. Simard, & L. Specia (Eds.), Post-editing of machine translation (pp.219–245). Newcastle: Cambridge Scholars Publishing.
    [Google Scholar]
  56. Monti, J., Seretan, V., Corpas-Pastor, G., & Mitkov, R.
    (2018) Multiword units in machine translation and translation technology. InR. Mitkov, J. Monti, G. C. Pastor & V. Seretan (Eds.), Multiword units in machine translation and translation technology (pp.1–40). Amsterdam: John Benjamins. 10.1075/cilt.341.01mon
    https://doi.org/10.1075/cilt.341.01mon [Google Scholar]
  57. Moorkens, J., & O’Brien, S.
    (2015) Post-editing evaluations: trade-offs between novice and professional participants. InProceedings of the 18th Annual Conference of the European Association for Machine Translation (pp.75–81). Antalya, Turkey: European Association for Machine Translation.
    [Google Scholar]
  58. Moorkens, J., O’Brien, S., da Silva, I. A. L., Fonseca, N., & Alves, F.
    (2015) Correlations of perceived post-editing effort with measurements of actual effort. Machine Translation, 29, 267–284. 10.1007/s10590‑015‑9175‑2
    https://doi.org/10.1007/s10590-015-9175-2 [Google Scholar]
  59. Mráček, D.
    (2018) Inverse translation: the more challenging direction. Linguistica Pragensia, 28(2), 202–221.
    [Google Scholar]
  60. Newmark, P.
    (1981) Approaches to translation. Oxford: Pergamon.
    [Google Scholar]
  61. (1988) A Textbook of translation. London: Prentice Hall.
    [Google Scholar]
  62. Nitzke, J.
    (2019) Problem solving activities in post-editing and translation from scratch: A multi-method study. Berlin: Language Science Press.
    [Google Scholar]
  63. O’Brien, S.
    (2002) Teaching post-editing: A proposal for course content. InProceedings of the 6th EAMT Workshop: Teaching machine translation (pp.99–106). Manchester, UK: European Association for Machine Translation.
    [Google Scholar]
  64. (2009) Eye tracking in translation process research: methodological challenges and solutions. Methodology, technology and innovation in translation process research, 38, 251–266.
    [Google Scholar]
  65. (2010) Introduction to post-editing: Who, what, how and where to next. InThe Ninth Conference of the Association for Machine Translation in the Americas. Denver, Colorado: Association for Machine Translation in the Americas.
    [Google Scholar]
  66. O’Brien, S., & Simard, M.
    (2014) Introduction to special issue on post-editing. Machine Translation, 28(3), 159–164. 10.1007/s10590‑014‑9166‑8
    https://doi.org/10.1007/s10590-014-9166-8 [Google Scholar]
  67. Papineni, K., Roukos, S., Ward, T., & Zhu, W. J.
    (2002) BLEU: a method for automatic evaluation of machine translation. InProceedings of the 40th annual meeting on association for computational linguistics (311–318). Philadelphia, Pennsylvania, USA: Association for Computational Linguistics.
    [Google Scholar]
  68. Pavlović, N.
    (2007) Directionality in Collaborative Translation Processes. A Study of Novice Translators. (Unpublished doctoral dissertation, Universitat Rovira i Virgili). Retrieved fromdarhiv.ffzg.unizg.hr/id/eprint/2352/1/THESIS.pdf
  69. Pavlović, N., & Jensen, K. T. H.
    (2009) Eye tracking translation directionality. InA. Pym & A. Perekrestenko (Eds.), Translation research projects2 (Vol.2, pp.93–109). Tarragona: Intercultural Studies Group.
    [Google Scholar]
  70. Pokorn, N.
    (2005) Challenging the traditional axioms: Translation into a non-mother tongue. Amsterdam: John Benjamins. 10.1075/btl.62
    https://doi.org/10.1075/btl.62 [Google Scholar]
  71. Popovic, M., Arčan, M., & Lommel, A.
    (2016) Potential and limits of using post-edits as reference translations for mt evaluation. Baltic Journal of Modern Computing2 (Vol.4, No.2, pp.218–229). Riga, Latvia.
    [Google Scholar]
  72. Raptis, S., & Giagkou, M.
    (2016) From capturing to generating human behavior: closing the interaction loop at the hubic lab. InProceedings of the 20th panhellenic conference on informatics (PCI) (pp.1–6). Partas, Greece: ACM Digital Library, International Conference Proceedings Series. 10.1145/3003733.3003814
    https://doi.org/10.1145/3003733.3003814 [Google Scholar]
  73. Sánchez-Gijón, P., & Torres-Hostench, O.
    (2014) MT Post-editing into the mother tongue or into a foreign language? Spanish-to-English MT translation output post-edited by translation trainees. InS. O’Brien, M. Simard & L. Specia (Eds.), Proceedings of the Third Workshop on Post-Editing Technology and Practice (WPTP-3)-AMTA Workshop (pp.15–19). Vancouver, Canada: Association for Machine Translation in the Americas.
    [Google Scholar]
  74. Schmitt, P. A.
    (1998) Marktsituation der Übersetzer. InM. Snell-Hornby, H. G. Hönig, P. Kussmaul & P. A. Schmitt (Eds.), Handbuch translation (pp.5–13). Tübingen: Stauffenburg.
    [Google Scholar]
  75. Sharmin, S., Spakov, O., Räihä, K. J., & Jakobsen, A. L.
    (2008) Where on the screen do translation students look while translating, and for how long?Copenhagen studies in language, 36, 31–51.
    [Google Scholar]
  76. Shreve, G., & Angelone, Ε.
    (Εds.) (2010) Translation and cognition. Amsterdam: John Benjamins. 10.1075/ata.xv
    https://doi.org/10.1075/ata.xv [Google Scholar]
  77. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J.
    (2006) A study of translation edit rate with targeted human annotation. InProceedings of the 7th Conference of the Association for Machine Translation in the Americas (Vol.200. No.6, pp.223–231). Cambridge, Massachusetts, USA: The Association for Machine Translation in the Americas.
    [Google Scholar]
  78. Talaván, N., & Rodríguez-Arancón, P.
    (2014) The use of reverse subtitling as an online collaborative language learning tool. The Interpreter and Translator Trainer, 8(1), 84–101. 10.1080/1750399X.2014.908559
    https://doi.org/10.1080/1750399X.2014.908559 [Google Scholar]
  79. Toledo Báez, M. C.
    (2018) Machine translation and post-editing: Impact of training and directionality on quality and productivity. Revista Tradumàtica. Technologies de la Traducció, 16, 24–34. 10.5565/rev/tradumatica.215
    https://doi.org/10.5565/rev/tradumatica.215 [Google Scholar]
  80. Vidal, E.
    (1997) Finite-state speech-to-speech translation. In1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol.1, pp.111–114). Munich, Germany: IEEE Computer Society. 10.1109/ICASSP.1997.599563
    https://doi.org/10.1109/ICASSP.1997.599563 [Google Scholar]
  81. Vieira, L. N., Alonso, E., & Bywood, L.
    (2019) Introduction: Post-editing in practice – Process, product and networks. Jostrans: The Journal of Specialised Translation, 31, 2–13.
    [Google Scholar]
  82. Wang, B.
    (2011) Translation practices and the issue of directionality in China. Meta, 56(4), 896–914. 10.7202/1011259ar
    https://doi.org/10.7202/1011259ar [Google Scholar]
  83. Whyatt, B.
    (2019) In search of directionality effects in the translation process and in the end product. Translation, Cognition and Behaviour, 2(1), 79–100. 10.1075/tcb.00020.why
    https://doi.org/10.1075/tcb.00020.why [Google Scholar]
  84. Xiao, K.
    (2013) Cognitive approaches to translation process: Current trends, challenges and future development. InR. A. Awang, A. A. G. Ghani & L. A. Ayob (Eds.), Translator and Interpreter Education and Training: Innovation, Assessment and Recognition (pp.432–448). Kuala Lumpur: Malaysian Translators Association.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/cogls.00083.sta
Loading
/content/journals/10.1075/cogls.00083.sta
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error