Volume 40, Issue 2
  • ISSN 0176-4225
  • E-ISSN: 1569-9714
Buy:$35.00 + Taxes



This paper uses the tools of distributional semantics to investigate the semantic change of from a noun meaning ‘goods, possessions’ and an indefinite pronoun ‘something’ in the Medieval/Classical period of Spanish to an indefinite pronoun and degree adverb ‘a bit’ in contemporary Spanish. We compare the results of a previous corpus-based study (Amaral 2016) on the semantic change of with an analysis using word embeddings models with two goals: (i) to show how word embeddings can help identify different synchronic values of a word, and (ii) to provide measures of change through distributional semantic methods. We discuss the challenges of a study with this methodology using limited data from older periods of a language, hence putting into focus decisions that have to be made and their implications for the analysis. In this way, we hope to contribute to a fruitful integration of more traditional studies in diachronic semantics with the methodology of word embeddings.


Article metrics loading...

Loading full text...

Full text loading...


  1. Amaral, Patrícia
    2016 When something becomes a bit. Diachronica33(2). 151–186.
    [Google Scholar]
  2. Boleda, Gemma
    2020 Distributional semantics and linguistic theory. Annual Review of Linguistics61. 13.1–13.22. 10.1146/annurev‑linguistics‑011619‑030303
    https://doi.org/10.1146/annurev-linguistics-011619-030303 [Google Scholar]
  3. Boleda, Gemma & Aurélie Herbelot
    2016 Formal distributional semantics: Introduction to the special issue. Computational Linguistics619–635. 10.1162/COLI_a_00261
    https://doi.org/10.1162/COLI_a_00261 [Google Scholar]
  4. Bréal, Michel
    1897Essai de semantique. Paris: Hachette.
    [Google Scholar]
  5. Bybee, Joan, Revere Perkins & William Pagliuca
    1994The evolution of grammar: Tense, aspect, and modality in the languages of the world. Chicago: University of Chicago Press.
    [Google Scholar]
  6. Campbell, Lyle
    2013Historical linguistics: An introduction. Cambridge, MA: The MIT Press 3rd edn.
    [Google Scholar]
  7. Cardellino, Cristian
    2019 Spanish billion words corpus and embeddings. https://crscardellino.github.io/SBWCE/
  8. Church, Kenneth Ward & Patrick Hanks
    1990 Word association norms, mutual information, and lexicography. Computational Linguistics16(1). 22–29. https://www.aclweb.org/anthology/J90-1003
    [Google Scholar]
  9. Clark, Stephen
    2015 Vector space models of lexical meaning. InShalom Lappin & Chris Fox (eds.), The handbook of contemporary semantic theory, 493–522. London: Wiley. 10.1002/9781118882139.ch16
    https://doi.org/10.1002/9781118882139.ch16 [Google Scholar]
  10. Condoravdi, Cleo & Ashwini Deo
    2014 Aspect shifts in Indo-Aryan and trajectories of semantic change. InChiara Gianollo, Agnes Jäger & Doris Penka (eds.), Language change at the syntax-semantics interface, 261–292. Berlin: Mouton de Gruyter.
    [Google Scholar]
  11. Cornillie, Bert
    2007Evidentiality and epistemic modality in Spanish (semi-)auxiliaries: A cognitive-functional approach. Berlin: De Gruyter.
    [Google Scholar]
  12. Corominas, Joan & José A. Pascual
    1980–1991Diccionario crítico etimológico castellano e hispánico. Gredos.
    [Google Scholar]
  13. Cruse, D. A.
    1986Lexical semantics. Cambridge: Cambridge University Press.
    [Google Scholar]
  14. Davies, Mark
    2001 Corpus del Español. www.corpusdelespanol.org
  15. De Cesare, Anna-Maria
    2017 Introduction: On ‘additivity’ as a multidisciplinary research field. InAnna-Maria De Cesare & Cecilia Andorno (eds.), Focus on additivity, 1–22. John Benjamins. 10.1075/pbns.278.00dec
    https://doi.org/10.1075/pbns.278.00dec [Google Scholar]
  16. Deo, Ashwini
    2015 Diachronic semantics. Annual Review of Linguistics11. 179–197. 10.1146/annurev‑linguist‑030514‑125100
    https://doi.org/10.1146/annurev-linguist-030514-125100 [Google Scholar]
  17. Dubossarsky, Haim, Simon Hengchen, Nina Tahmasebi & Dominik Schlechtweg
    2019 Time-out: Temporal referencing for robust modeling of lexical semantic change. InProceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 457–470. Florence, Italy. https://www.aclweb.org/anthology/P19-1044. 10.18653/v1/P19‑1044
    https://doi.org/10.18653/v1/P19-1044 [Google Scholar]
  18. Eberenz, Rolf
    1994 Enlaces conjuntivos y adjuntos de sentido aditivo del español preclásico: otrosí, eso mismo, asimismo, demás, también, aun, etc. Iberoromania391. 1–20. 10.1515/iber.1994.1994.39.1
    https://doi.org/10.1515/iber.1994.1994.39.1 [Google Scholar]
  19. Eckardt, Regine
    2006Meaning change in grammaticalization. An enquiry into semantic reanalysis. Oxford: Oxford University Press. 10.1093/acprof:oso/9780199262601.001.0001
    https://doi.org/10.1093/acprof:oso/9780199262601.001.0001 [Google Scholar]
  20. Espinoza Elorza, Rosa María
    2018 La formación de los marcadores sumativos en español. desde sobresto hasta a mayores. Estudios Humanísticos Filología401. 95–118. 10.18002/ehf.v0i40.5463
    https://doi.org/10.18002/ehf.v0i40.5463 [Google Scholar]
  21. Fernández-Ordóñez, Ines
    2016De más (demás), demasiado: la historia de dos cuantificadores contemplada desde la dialectología. InLópez Serena, A. and Narbona Jiménez, A. and del Rey Quesada, S. (ed.), El Español a través del tiempo. Estudios ofrecidos a Rafael Cano Aguilar, 477–496. Sevilla: Universidad de Sevilla.
    [Google Scholar]
  22. Finkelstein, Lev, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman & Eytan Ruppin
    2001 Placing search in context: The concept revisited. InProceedings of the 10th International World Wide Web Conference, 406–414. 10.1145/371920.372094
    https://doi.org/10.1145/371920.372094 [Google Scholar]
  23. Firth, John R.
    1957Papers in linguistics. London: Oxford University Press.
    [Google Scholar]
  24. Frermann, Lea & Mirella Lapata
    2016 A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics41. 31–45. 10.1162/tacl_a_00081
    https://doi.org/10.1162/tacl_a_00081 [Google Scholar]
  25. Gago Jover, Francisco
    (ed.) 2011 Spanish Chronicle Texts. Digital Library of Old Spanish Texts. Hispanic Seminary of Medieval Studies. www.hispanicseminary/t&c/ac/index.htm
    [Google Scholar]
  26. Gergel, Remus & Jonathan Watkins
    (eds.) 2020Quantification and scales in change. Language Science Press.
    [Google Scholar]
  27. GITHE, Universidad de Alcalá
    GITHE, Universidad de Alcalá 2015 Corpus de Documentos Españoles Anteriores a 1800. corpuscodea.es/
  28. Giulianelli, Mario, Marco Del Tredici & Raquel Fernández
    2020 Analysing lexical semantic change with contextualised word representations. InProceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3960–3973. Online. 10.18653/v1/2020.acl‑main.365. https://aclanthology.org/2020.acl-main.365
    https://doi.org/10.18653/v1/2020.acl-main.365 [Google Scholar]
  29. Golub, Gene H. & Christian Reinsch
    1971 Singular value decomposition and least squares solutions. InF. L. Bauer, A. S. Householder, F. W. J. Olver, H. Rutishauser, K. Samelson & E. Stiefel (eds.), Handbook for automatic computation, 134–151. Springer. VolumeII1: Linear Algebra. 10.1007/978‑3‑642‑86940‑2_10
    https://doi.org/10.1007/978-3-642-86940-2_10 [Google Scholar]
  30. Hamilton, William L., Jure Leskovec & Dan Jurafsky
    2016 Diachronic word embeddings reveal statistical laws of semantic change. InProceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 1489–1501. Berlin, Germany. 10.18653/v1/P16‑1141. https://www.aclweb.org/anthology/P16-1141
    https://doi.org/10.18653/v1/P16-1141 [Google Scholar]
  31. Harris, Zellig
    1954 Distributional structure. Word10(2–3). 146–162. 10.1080/00437956.1954.11659520
    https://doi.org/10.1080/00437956.1954.11659520 [Google Scholar]
  32. Haspelmath, Martin
    1997Indefinite pronouns. Oxford: Oxford University Press.
    [Google Scholar]
  33. Hellrich, Johannes
    2019 Word embeddings: Reliability and semantic change: Jena University Language and Information Engineering Lab dissertation.
  34. Hock, Hans Heinrich
    1991Principles of historical linguistics. Berlin: Mouton de Gruyter. 10.1515/9783110219135
    https://doi.org/10.1515/9783110219135 [Google Scholar]
  35. Hu, Hai, Patrícia Amaral & Sandra Kübler
    2021 Word embeddings and semantic shifts in historical Spanish: Methodological considerations. Digital Scholarship in the Humanities, 37,(2). 441–461. 10.1093/llc/fqab050
    https://doi.org/10.1093/llc/fqab050 [Google Scholar]
  36. Hu, Renfen, Shen Li & Shichen Liang
    2019 Diachronic sense modeling with deep contextualized word embeddings: An ecological view. InProceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3899–3908. Florence, Italy. 10.18653/v1/P19‑1379. https://aclanthology.org/P19-1379
    https://doi.org/10.18653/v1/P19-1379 [Google Scholar]
  37. Jurafsky, Daniel & James H. Martin
    2019Speech and Language Processing. 3rd edn.Online athttps://web.stanford.edu/~jurafsky/slp3/; retrievedApril 2020.
    [Google Scholar]
  38. Keniston, Hayward
    1937The syntax of Castilian prose: The sixteenth century. Chicago: The University of Chicago Press.
    [Google Scholar]
  39. Kutuzov, Andrey, Lilja Øvrelid, Terrence Szymanski & Erik Velldal
    2018 Diachronic word embeddings and semantic shifts: A survey. InProceedings of the 27th International Conference on Computational Linguistics, 1384–1397.
    [Google Scholar]
  40. Landauer, Thomas, Peter Folz & Darrell Laham
    1998 An introduction to latent semantic analysis. Discourse Processing25(2&3). 259–284. 10.1080/01638539809545028
    https://doi.org/10.1080/01638539809545028 [Google Scholar]
  41. Lenci, Alessandro
    2018 Distributional models of word meaning. Annual Review of Linguistics4(1). 151–171. 10.1146/annurev‑linguistics‑030514‑125254
    https://doi.org/10.1146/annurev-linguistics-030514-125254 [Google Scholar]
  42. Levy, Omer, Yoav Goldberg & Ido Dagan
    2015 Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics31. 211–225. 10.1162/tacl_a_00134
    https://doi.org/10.1162/tacl_a_00134 [Google Scholar]
  43. Luo, Yiwei, Dan Jurafsky & Beth Levin
    2019 From insanely jealous to insanely delicious: Computational models for the semantic bleaching of English intensifiers. InProceedings of the 1st International Workshop on Computational Approaches to Historical Language Change, 1–13. Florence, Italy. https://www.aclweb.org/anthology/W19-4701/. 10.18653/v1/W19‑4701
    https://doi.org/10.18653/v1/W19-4701 [Google Scholar]
  44. van der Maaten, Laurens & Geoffrey Hinton
    2008 Visualizing data using t-SNE. Journal of Machine Learning Research91. 2579–2605.
    [Google Scholar]
  45. Mikolov, Thomas, Kai Chen, Greg Corrado & Jeffrey Dean
    2013 Efficient estimation of word representations in vector space. InProceedings of the International Conference on Learning Representations (ICLR).
    [Google Scholar]
  46. Moretti, Franco
    2013Distant reading. London: Verso.
    [Google Scholar]
  47. Müller, Bodo
    1987Diccionario del español medieval. Heidelberg: C. Winter.
    [Google Scholar]
  48. Pennington, Jeffrey, Richard Socher & Christopher D. Manning
    2014 GloVe: Global vectors for word representation. InProceedings of the Conference on Empirical Methods in Natural Language Processing EMNLP, 1532–1543. Doha, Qatar. 10.3115/v1/D14‑1162
    https://doi.org/10.3115/v1/D14-1162 [Google Scholar]
  49. Poplack, Shana & Sali Tagliamonte
    2000 The grammaticization of going to in African American English. Language Variation and Change111. 315–342. 10.1017/S0954394599113048
    https://doi.org/10.1017/S0954394599113048 [Google Scholar]
  50. Real Academia Española
    Real Academia Española. n.a.Corpus Diacrónico del Español. corpus.rae.es/cordenet.html
  51. Rodda, Martina, Marco Senaldi & Alessandro Lenci
    2017 Panta Rei: Tracking semantic change with distributional semantics in Ancient Greek. Italian Journal of Computational Linguistics3(1). 11–24. 10.4000/ijcol.421
    https://doi.org/10.4000/ijcol.421 [Google Scholar]
  52. Rodríguez Ramalle, Teresa María
    2001 Observaciones sobre el uso de los adjetivos y los adverbios en -mente con valor de grado en español. Español Actual751. 33–43.
    [Google Scholar]
  53. Rosenfeld, Alex & Katrin Erk
    2018 Deep neural models of semantic shift. InProceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 474–484. New Orleans, Louisiana. 10.18653/v1/N18‑1044. https://www.aclweb.org/anthology/N18-1044
    https://doi.org/10.18653/v1/N18-1044 [Google Scholar]
  54. Sagi, Eyal, Stefan Kaufmann & Brady Clark
    2012 Tracing semantic change with Latent Semantic Analysis. InKathryn Allan & Justyna Robinson (eds.), Current methods in historical semantics, 161–183. Berlin: Mouton de Gruyter.
    [Google Scholar]
  55. Sánchez López, Cristina
    1999 Los cuantificadores: Clases de cuantificadores y estructuras cuantificativas. InIgnacio Bosque & Violeta Demonte (eds.), Gramática descriptiva de la Lengua Española, vol.11, cap.16. Espasa-Calpe.
    [Google Scholar]
  56. Sánchez-Martínez, Felipe, Isabel Martínez-Sempere, Xavier Ivars-Ribes & Rafael C. Carrasco
    2013 An open diachronic corpus of historical Spanish. Language Resources and Evaluation47(4). 1327–1342. 10.1007/s10579‑013‑9239‑y
    https://doi.org/10.1007/s10579-013-9239-y [Google Scholar]
  57. Sauerland, Uli & Penka Stateva
    2007 Scalar vs. epistemic vagueness: Evidence from approximators. InProceedings of the 17th Semantics and Linguistic Theory conference (SALT), 228–245. University of Connecticut. https://journals.linguisticsociety.org/proceedings/index.php/SALT/article/view/3091. 10.3765/salt.v17i0.3091
    https://doi.org/10.3765/salt.v17i0.3091 [Google Scholar]
  58. Stern, Gustaf
    1921Swift, swiftly, and their synonyms. A contribution to semantic analysis and theory. Göteborg: Wettergren & Kerber.
    [Google Scholar]
  59. Tang, Xuri
    2018 A state-of-the-art of semantic change computation. Natural Language Engineering24(5). 649–676. 10.1017/S1351324918000220
    https://doi.org/10.1017/S1351324918000220 [Google Scholar]
  60. Torres Cacoullos, Rena
    2012 Grammaticalization through inherent variability. Studies in Language36(1). 73–122. 10.1075/sl.36.1.03tor
    https://doi.org/10.1075/sl.36.1.03tor [Google Scholar]
  61. Traugott, Elizabeth Closs & Richard Dasher
    2002Regularity in semantic change. Cambridge: Cambridge University Press.
    [Google Scholar]
  62. Xu, Yang & Charles Kemp
    2015 A computational evaluation of two laws of semantic change. InProceedings of the 37th Annual Meeting of the Cognitive Science Society, 2703–2708.
    [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): corpora; semantic change; Spanish; word embeddings
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error