Volume 3, Issue 2
  • ISSN 2589-1588
  • E-ISSN: 2589-1596
Buy:$35.00 + Taxes



Based on a formal analysis of the operations Merge and Move, I provide a computational answer to the question why Move might be an integral part of language. The answer is rooted in the framework of subregular complexity, which reveals that Merge is most succinctly analyzed in terms of the formal class TSL. Any cognitive device that can handle this level of complexity also possesses sufficient resources for Move. In fact, Merge and Move are remarkably similar instances of TSL. Consequently, Move has little computational or conceptual cost attached to it and comes essentially for free in any grammar that expresses Merge as compactly as possible.


Article metrics loading...

Loading full text...

Full text loading...


  1. Aksënova, A., Graf, T., & Moradi, S.
    (2016) Morphotactics as tier-based strictly local dependencies. Proceedings of the 14th SIGMORPHON workshop on computational research in phonetics, phonology, and morphology (pp.121–130). 10.18653/v1/W16‑2019
    https://doi.org/10.18653/v1/W16-2019 [Google Scholar]
  2. Chomsky, N.
    (2004) Beyond explanatory adequacy. InA. Belletti (Ed.), Structures and beyond: The cartography of syntactic structures volume 3 (pp.104–131). Oxford: Oxford University Press.
    [Google Scholar]
  3. De Santo, A., & Graf, T.
    (2019) Structure sensitive tier projection: Applications and formal properties. InR. Bernardi, G. Kobele, & S. Pogodalla (Eds.), Formal grammar 2019 (pp.35–50). Berlin, Heidelberg: Springer. 10.1007/978‑3‑662‑59648‑7_3
    https://doi.org/10.1007/978-3-662-59648-7_3 [Google Scholar]
  4. Graf, T.
    (2012) Locality and the complexity of Minimalist derivation tree languages. InP. de Groot & M. Nederhof (Eds.), Formal grammar 2010/2011, Lecture Notes in Computer Science 7395 (pp.208–227). Heidelberg: Springer. 10.1007/978‑3‑642‑32024‑8_14
    https://doi.org/10.1007/978-3-642-32024-8_14 [Google Scholar]
  5. (2017) A computational guide to the dichotomy of features and constraints. Glossa, 2, 1–36. 10.5334/gjgl.212
    https://doi.org/10.5334/gjgl.212 [Google Scholar]
  6. (2018) Why movement comes for free once you have adjunction. InD. Edmiston, M. Ermolaeva, E. Hakgüder, J. Lai, K. Montemurro, B. Rhodes, A. Sankhagowit, & M. Tabatowski (Eds.), Proceedings of CLS53 (pp.117–136).
    [Google Scholar]
  7. (2019) A subregular bound on the complexity of lexical quantifiers. InJ. J. Schlöder, D. McHugh, & F. Roelofsen (Eds.), Proceedings of the 22nd Amsterdam Colloquium (pp.455–464).
    [Google Scholar]
  8. Graf, T., Aksënova, A., & De Santo, A.
    (2016) A single movement normal form for Minimalist grammars. InA. Foret, G. Morrill, R. Muskens, R. Osswald, & S. Pogodalla (Eds.). Formal Grammar: 20th and 21st international conferences, FG 2015, Barcelona, Spain, August 2015, revised selected papers. FG 2016, Bozen, Italy, August 2016 (pp.200–215). Heidelberg: Springer. 10.1007/978‑3‑662‑53042‑9_12
    https://doi.org/10.1007/978-3-662-53042-9_12 [Google Scholar]
  9. Graf, T., & Kostyszyn, K.
    (2021) Multiple wh-movement is not special: The subregular complexity of persistent features in Minimalist grammars. Proceedings of the Society for Computation in Linguistics (SCiL) 2021 (pp.275–285).
    [Google Scholar]
  10. Heinz, J.
    (2018) The computational nature of phonological generalizations. InL. Hyman & F. Plank (Eds.), Phonological typology (pp.126–195). Berlin: Mouton De Gruyter. 10.1515/9783110451931‑005
    https://doi.org/10.1515/9783110451931-005 [Google Scholar]
  11. Heinz, J., Rawal, C., & Tanner, H. G.
    (2011) Tier-based strictly local constraints in phonology. Proceedings of the 49th annual meeting of the association for computational linguistics (pp.58–64).
    [Google Scholar]
  12. Kobele, G.
    (2011) Minimalist tree languages are closed under intersection with recognizable tree languages. InS. Pogodalla and J.-P. Prost (Eds.), LACL 2011, Lecture Notes in Artificial Intelligence 6736 (pp.129–144). 10.1007/978‑3‑642‑22221‑4_9
    https://doi.org/10.1007/978-3-642-22221-4_9 [Google Scholar]
  13. Richards, N.
    (2016) Contiguity theory. Cambridge, MA: MIT Press.
    [Google Scholar]
  14. Rogers, J., and Pullum, G. K.
    (2011) Aural pattern recognition experiments and the subregular hierarchy. Journal of Logic, Language and Information, 20, 329–342. 10.1007/s10849‑011‑9140‑2
    https://doi.org/10.1007/s10849-011-9140-2 [Google Scholar]
  15. Stabler, E.
    (1997) Derivational Minimalism. InRetoré, C. (Ed.), Logical aspects of computational linguistics, Lecture Notes in Computer Science 1328 (pp.68–95). 10.1007/BFb0052152
    https://doi.org/10.1007/BFb0052152 [Google Scholar]
  16. (2011) Computational perspectives on Minimalism. InBoeckx, C. (Ed.), Oxford handbook of linguistic Minimalism (pp.617–643). Oxford: Oxford University Press. 10.1093/oxfordhb/9780199549368.013.0027
    https://doi.org/10.1093/oxfordhb/9780199549368.013.0027 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): computational syntax; merge; Minimalist grammars; move; subregular complexity
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error