1887
Volume 5, Issue 1
  • ISSN 2589-1588
  • E-ISSN: 2589-1596
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Procedural metacognition is the set of affect-based mechanisms allowing agents to regulate cognitive actions like perceptual discrimination, memory retrieval or problem solving. This article proposes that procedural metacognition has had a major role in the evolution of communication. A plausible hypothesis is that, under pressure for maximizing signalling efficiency, the metacognitive abilities used by nonhumans to regulate their perception and their memory have been re-used to regulate their communication. On this view, detecting one’s production errors in signalling, or solving species-specific trade-offs between informativeness, processing effort, clarity, or urgency depend on a form of procedural metacognition, called “metacommunication”. How does this view relate to Gricean theories of human communication? A parallel between procedural trade-offs and conversational maxims is discussed for its evolutionary implications. Rather than accepting radically discontinuist interpretations, in which mindreading operates a full reorganization of pragmatics, it is proposed that procedural forms of regulation are entrenched in all forms of human communication. According to contextual demands, humans adopt and monitor more or less demanding informational goals, such as factual updating, clarifying, explaining, proving, and reaching consensus in collective matters. Under time pressure, only part of these goals require adopting others’ viewpoint. Efficiency in collective decision-making, in particular, might have been considerably raised by an ability to interpret others’ intentions and motivations.

Loading

Article metrics loading...

/content/journals/10.1075/elt.00046.pro
2023-07-07
2024-06-23
Loading full text...

Full text loading...

References

  1. Abbot-Smith, K., Schulze, C., Anagnostopoulou, N., Zajączkowska, M., & Matthews, D.
    (2022) How do 3-year-olds use relevance inferencing to interpret indirect speech?. First Language, 42(1), 3–21. 10.1177/01427237211043594
    https://doi.org/10.1177/01427237211043594 [Google Scholar]
  2. Ackerman, R.
    (2014) The diminishing criterion model for metacognitive regulation of time investment. Journal of experimental psychology: General, 143(3), 1349–1368. 10.1037/a0035098
    https://doi.org/10.1037/a0035098 [Google Scholar]
  3. Aguirre, M., Brun, M., Reboul, A., & Mascaro, O.
    (2022) How do we interpret questions? Simplified representations of knowledge guide humans’ interpretation of information requests. Cognition, 2181, 104954. 10.1016/j.cognition.2021.104954
    https://doi.org/10.1016/j.cognition.2021.104954 [Google Scholar]
  4. Akçay, Ç. L., Tom, M. E., Campbell, S. E., & Beecher, M. D.
    (2013) Song type matching is an honest early threat signal in a hierarchical animal communication system. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20122517. 10.1098/rspb.2012.2517
    https://doi.org/10.1098/rspb.2012.2517 [Google Scholar]
  5. Allen, J. A., Garland, E. C., Dunlop, R. A., & Noad, M. J.
    (2018) Cultural revolutions reduce complexity in the songs of humpback whales. Proceedings of the Royal Society B, 285(1891), 20182088. 10.1098/rspb.2018.2088
    https://doi.org/10.1098/rspb.2018.2088 [Google Scholar]
  6. Arnold, K., & Zuberbühler, K.
    (2012) Call combinations in monkeys: compositional or idiomatic expressions?. Brain and language, 120(3), 303–309. 10.1016/j.bandl.2011.10.001
    https://doi.org/10.1016/j.bandl.2011.10.001 [Google Scholar]
  7. Avital, E., & Jablonka, E.
    (2000) Animal traditions: Behavioural inheritance in evolution. Cambridge: Cambridge University Press. 10.1017/CBO9780511542251
    https://doi.org/10.1017/CBO9780511542251 [Google Scholar]
  8. Balcomb, F. K., & Gerken, L.
    (2008) Three-year-old children can access their own memory to guide responses on a visual matching task. Developmental science, 11(5), 750–760. 10.1111/j.1467‑7687.2008.00725.x
    https://doi.org/10.1111/j.1467-7687.2008.00725.x [Google Scholar]
  9. Barbas, H.
    (2007) Flow of information for emotions through temporal and orbitofrontal pathways. Journal of anatomy, 211(2), 237–249. 10.1111/j.1469‑7580.2007.00777.x
    https://doi.org/10.1111/j.1469-7580.2007.00777.x [Google Scholar]
  10. Barr, D. J., & Keyser, B.
    (2002) Anchoring comprehension in linguistic precedents. Journal of Memory and Language, 46(2), 391–418. 10.1006/jmla.2001.2815
    https://doi.org/10.1006/jmla.2001.2815 [Google Scholar]
  11. Basile, B. M., Hampton, R. R., Suomi, S. J., & Murray, E. A.
    (2009) An assessment of memory awareness in tufted capuchin monkeys (Cebus apella). Animal Cognition, 12(1), 169–180. 10.1007/s10071‑008‑0180‑1
    https://doi.org/10.1007/s10071-008-0180-1 [Google Scholar]
  12. Beran, M. J., French, K., Smith, T. R., & Parrish, A. E.
    (2019) Limited evidence of number–space mapping in rhesus monkeys (Macaca mulatta) and capuchin monkeys (Sapajus apella). Journal of Comparative Psychology, 133(3), 281–293. 10.1037/com0000177
    https://doi.org/10.1037/com0000177 [Google Scholar]
  13. Beran, M. J., & Smith, J. D.
    (2011) Information seeking by rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella). Cognition, 120(1), 90–105. 10.1016/j.cognition.2011.02.016
    https://doi.org/10.1016/j.cognition.2011.02.016 [Google Scholar]
  14. Bernard, S., Proust, J., & Clément, F.
    (2015) Procedural metacognition and false belief understanding in 3-to 5-year-old children. PloS one, 10(10), e0141321. 10.1371/journal.pone.0141321
    https://doi.org/10.1371/journal.pone.0141321 [Google Scholar]
  15. Berwick, R. C., Beckers, G. J., Okanoya, K., & Bolhuis, J. J.
    (2012) A bird’s eye view of human language evolution. Frontiers in evolutionary neuroscience, 41, 5. 10.3389/fnevo.2012.00005
    https://doi.org/10.3389/fnevo.2012.00005 [Google Scholar]
  16. Brown, C., Garwood, M. P., & Williamson, J. E.
    (2012) It pays to cheat: tactical deception in a cephalopod social signalling system. Biology letters, 8(5), 729–732. 10.1098/rsbl.2012.0435
    https://doi.org/10.1098/rsbl.2012.0435 [Google Scholar]
  17. Browning, H., & Birch, J.
    (2022) Animal sentience. Philosophy Compass, 17(5), e12822. 10.1111/phc3.12822
    https://doi.org/10.1111/phc3.12822 [Google Scholar]
  18. Brumm, H., & Slabbekoorn, H.
    (2005) Acoustic communication in noise. Advances in the Study of Behavior351, 151–209. 10.1016/S0065‑3454(05)35004‑2
    https://doi.org/10.1016/S0065-3454(05)35004-2 [Google Scholar]
  19. Burkart, J., Martins, E. G., Miss, F., & Zürcher, Y.
    (2018) From sharing food to sharing information: cooperative breeding and language evolution. Interaction Studies, 19(1–2), 136–150. 10.1075/is.17026.bur
    https://doi.org/10.1075/is.17026.bur [Google Scholar]
  20. Byrne, R. W., Cartmill, E., Genty, E., Graham, K. E., Hobaiter, C., & Tanner, J.
    (2017) Great ape gestures: intentional communication with a rich set of innate signals. Animal cognition, 20 (4), 755–769. 10.1007/s10071‑017‑1096‑4
    https://doi.org/10.1007/s10071-017-1096-4 [Google Scholar]
  21. Call, J.
    (2012) Seeking information in non-human animals: weaving a metacognitive web. InM. Beran, J. Brandl, J. Perner & J. Proust (eds.), Foundations of metacognition, Oxford : Oxford University press, 62–75. 10.1093/acprof:oso/9780199646739.003.0005
    https://doi.org/10.1093/acprof:oso/9780199646739.003.0005 [Google Scholar]
  22. Chalcraft, V. J., & Gardner, R. A.
    (2005) Cross-fostered chimpanzees modulate signs of American Sign Language. Gesture, 5(1–2), 107–132. 10.1075/gest.5.1.09cha
    https://doi.org/10.1075/gest.5.1.09cha [Google Scholar]
  23. Cheney, D. L., & Seyfarth, R. M.
    (1990) How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press. 10.7208/chicago/9780226218526.001.0001
    https://doi.org/10.7208/chicago/9780226218526.001.0001 [Google Scholar]
  24. Cisek, P.
    (2007) Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1585–1599. 10.1098/rstb.2007.2054
    https://doi.org/10.1098/rstb.2007.2054 [Google Scholar]
  25. (2022) Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B, 377(1844), 20200522. 10.1098/rstb.2020.0522
    https://doi.org/10.1098/rstb.2020.0522 [Google Scholar]
  26. Converse, P. D., & DeShon, R. P.
    (2009) A tale of two tasks: reversing the self-regulatory resource depletion effect. Journal of Applied Psychology, 94(5), 1318.1324. 10.1037/a0014604
    https://doi.org/10.1037/a0014604 [Google Scholar]
  27. Cunningham, E., & Janson, C.
    (2007) Integrating information about location and value of resources by white-faced saki monkeys (Pithecia pithecia). Animal cognition, 10(3), 293–304. 10.1007/s10071‑007‑0077‑4
    https://doi.org/10.1007/s10071-007-0077-4 [Google Scholar]
  28. Daniel, R., & Pollmann, S.
    (2012) Striatal activations signal prediction errors on confidence in the absence of external feedback. Neuroimage, 59(4), 3457–3467. 10.1016/j.neuroimage.2011.11.058
    https://doi.org/10.1016/j.neuroimage.2011.11.058 [Google Scholar]
  29. Dawkins, R., & Krebs, J. R.
    (1978) Animal signals: Information or manipulation?InJ. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (Vol.21, pp.282–309). Oxford: Blackwell Scientific Publications.
    [Google Scholar]
  30. Deacon, T. W.
    (2010) A role for relaxed selection in the evolution of the language capacity. Proceedings of the National Academy of Sciences, 107(supplement_2), 9000–9006. 10.1073/pnas.0914624107
    https://doi.org/10.1073/pnas.0914624107 [Google Scholar]
  31. de Framond, L., Brumm, H., Thompson, W. I., Drabing, S. M., & Francis, C. D.
    (2022) The broken-wing display across birds and the conditions for its evolution. Proceedings of the Royal Society B, 2891(1971), 20220058. 10.1098/rspb.2022.0058
    https://doi.org/10.1098/rspb.2022.0058 [Google Scholar]
  32. Dretske, F.
    (1981) Knowledge and the Flow of Information. Cambridge: Cambridge University Press
    [Google Scholar]
  33. (1988) Explaining Behavior. Cambridge,Mass: MIT Press.
    [Google Scholar]
  34. Duffy, A., Latimer, K. W., Goldberg, J. H., Fairhall, A. L., & Gadagkar, V.
    (2022) Dopamine neurons evaluate natural fluctuations in performance quality. Cell reports, 38(13), 110574. 10.1016/j.celrep.2022.110574
    https://doi.org/10.1016/j.celrep.2022.110574 [Google Scholar]
  35. Dunstone, J., & Caldwell, C. A.
    (2018) Cumulative culture and explicit metacognition: A review of theories, evidence and key predictions. Palgrave Communications, 4(1). 10.1057/s41599‑018‑0200‑y
    https://doi.org/10.1057/s41599-018-0200-y [Google Scholar]
  36. Eliades, S. J., & Miller, C. T.
    (2017) Marmoset vocal communication: behavior and neurobiology. Developmental neurobiology, 77(3), 286–299. 10.1002/dneu.22464
    https://doi.org/10.1002/dneu.22464 [Google Scholar]
  37. Ferrigno, S., Kornell, N., & Cantlon, J. F.
    (2017) A metacognitive illusion in monkeys. Proceedings of the Royal Society B: Biological Sciences, 284(1862), 20171541. 10.1098/rspb.2017.1541
    https://doi.org/10.1098/rspb.2017.1541 [Google Scholar]
  38. Fitch, W.
    (2017) Empirical approaches to the study of language evolution. Psychonomic bulletin & review, 24.11: 3–33. 10.3758/s13423‑017‑1236‑5
    https://doi.org/10.3758/s13423-017-1236-5 [Google Scholar]
  39. Fitch, W. T., & Friederici, A. D.
    (2012) Artificial grammar learning meets formal language theory: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1933–1955. 10.1098/rstb.2012.0103
    https://doi.org/10.1098/rstb.2012.0103 [Google Scholar]
  40. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G.
    (2010) Relating introspective accuracy to individual differences in brain structure. Science, 329(5998), 1541–1543. 10.1126/science.1191883
    https://doi.org/10.1126/science.1191883 [Google Scholar]
  41. Franke, M., & Jäger, G.
    (2016) Probabilistic pragmatics, or why Bayes’ rule is probably important for pragmatics. Zeitschrift für sprachwissenschaft, 35(1), 3–44. 10.1515/zfs‑2016‑0002
    https://doi.org/10.1515/zfs-2016-0002 [Google Scholar]
  42. Frankfurt, H.
    (1988) The Importance of what we care about, Cambridge : Cambridge University Press. 10.1017/CBO9780511818172
    https://doi.org/10.1017/CBO9780511818172 [Google Scholar]
  43. Freeberg, T. M., & Lucas, J. R.
    (2012) Information theoretical approaches to chick-a-dee calls of Carolina chickadees (Poecile carolinensis). Journal of Comparative Psychology, 126(1), 68–81. 10.1037/a0024906
    https://doi.org/10.1037/a0024906 [Google Scholar]
  44. Gadagkar, V., Puzerey, P. A., Chen, R., Baird-Daniel, E., Farhang, A. R., & Goldberg, J. H.
    (2016) Dopamine neurons encode performance error in singing birds. Science, 354(6317), 1278–1282. 10.1126/science.aah6837
    https://doi.org/10.1126/science.aah6837 [Google Scholar]
  45. Gadagkar, V., Puzerey, P. A., & Goldberg, J. H.
    (2019) Dopamine neurons change their tuning according to courtship context in singing birds. bioRxiv, 822817
    [Google Scholar]
  46. Gallistel, C. R.
    (2020) Where meanings arise and how: Building on Shannon’s foundations. Mind & Language, 35(3), 390–401. 10.1111/mila.12289
    https://doi.org/10.1111/mila.12289 [Google Scholar]
  47. Gibson, E., Futrell, R., Piantadosi, S. P., Dautriche, I., Mahowald, K., Bergen, L., & Levy, R.
    (2019) How efficiency shapes human language. Trends in cognitive sciences, 23(5), 389–407. 10.1016/j.tics.2019.02.003
    https://doi.org/10.1016/j.tics.2019.02.003 [Google Scholar]
  48. Godfrey-Smith, P.
    (2017) The evolution of consciousness in phylogenetic context. InK. Andrew & J. Beck (Eds.), The Routledge Handbook of philosophy of animal minds (pp. 216–226). New York: Routledge. 10.4324/9781315742250‑21
    https://doi.org/10.4324/9781315742250-21 [Google Scholar]
  49. Gómez, J. C.
    (1998) Ostensive behavior in great apes: The role of eye contact. InA. E. Russon, K. A. Bard & S. T. Parker (Eds.), Reaching into thought: The minds of the great apes, (pp. 131–151). New York/Cambridge: Cambridge University Press.
    [Google Scholar]
  50. Goto, K., & Watanabe, S.
    (2012) Large-billed crows (Corvus macrorhynchos) have retrospective but not prospective metamemory. Animal Cognition, 15(1), 27–35. 10.1007/s10071‑011‑0428‑z
    https://doi.org/10.1007/s10071-011-0428-z [Google Scholar]
  51. Goupil, L., & Kouider, S.
    (2019) Developing a reflective mind: from core metacognition to explicit self-reflection. Current Directions in Psychological Science, 28(4), 403–408. 10.1177/0963721419848672
    https://doi.org/10.1177/0963721419848672 [Google Scholar]
  52. Goupil, L., & Proust, J.
    (2023) Curiosity as a metacognitive feeling. Cognition, 2311, 105325. 10.1016/j.cognition.2022.105325
    https://doi.org/10.1016/j.cognition.2022.105325 [Google Scholar]
  53. Grice, P.
    (1989) Studies in the Way of Words. Harvard University Press.
    [Google Scholar]
  54. Hage, S. R.
    (2018) Dual neural network model of speech and language evolution: new insights on flexibility of vocal production systems and involvement of frontal cortex. Current opinion In behavioral sciences, 211, 80–87. 10.1016/j.cobeha.2018.02.010
    https://doi.org/10.1016/j.cobeha.2018.02.010 [Google Scholar]
  55. Hage, S. R., & Nieder, A.
    (2016) Dual neural network model for the evolution of speech and language. Trends in neurosciences, 39(12), 813–829. 10.1016/j.tins.2016.10.006
    https://doi.org/10.1016/j.tins.2016.10.006 [Google Scholar]
  56. Haidle, M. N., Bolus, M., Collard, M., Conard, N. J., Garofoli, D., Lombard, M., Nowell, A., Tennie, C. & Whiten, A.
    (2015) The nature of culture: an eight-grade model for the evolution and expansion of cultural capacities in hominins and other animals. Journal of Anthropological Sciences. Vol.931 (2015), pp.43–70.
    [Google Scholar]
  57. Hampton, R. R.
    (2009) Multiple demonstrations of metacognition in nonhumans: Converging evidence or multiple mechanisms?Comparative Cognition and Behavior Reviews, 41, 17–28. 10.3819/ccbr.2009.40002
    https://doi.org/10.3819/ccbr.2009.40002 [Google Scholar]
  58. Harcourt, A. H.
    (2015) Humankind. New York: Simon and Schuster.
    [Google Scholar]
  59. Hauser, M.D.
    (1996) The evolution of communication. Cambridge, Mass.: MIT Press.
    [Google Scholar]
  60. Hauser, M. D.
    (1997) Minding the behaviour of deception. InWhiten & Byrne (eds.)., Machiavellian intelligence II: Extensions and evaluations, 121 (pp. 112–143). New York/Cambridge: Cambridge University Press. 10.1017/CBO9780511525636.006
    https://doi.org/10.1017/CBO9780511525636.006 [Google Scholar]
  61. Hesler, N., Mundry, R., & Dabelsteen, T.
    (2012) Are there age-related differences in the song repertoire size of Eurasian blackbirds?. Acta ethologica, 15(2), 203–210. 10.1007/s10211‑012‑0127‑z
    https://doi.org/10.1007/s10211-012-0127-z [Google Scholar]
  62. Heyes, C., Bang, D., Shea, N., Frith, C. D., & Fleming, S. M.
    (2020) Knowing ourselves together: The cultural origins of metacognition. Trends in Cognitive Sciences, 24(5), 349–362. 10.1016/j.tics.2020.02.007
    https://doi.org/10.1016/j.tics.2020.02.007 [Google Scholar]
  63. Hisey, E., Kearney, M. G., & Mooney, R.
    (2018) A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nature neuroscience, 21(4), 589–597. 10.1038/s41593‑018‑0092‑6
    https://doi.org/10.1038/s41593-018-0092-6 [Google Scholar]
  64. Hobaiter, C., & Byrne, R. W.
    (2017) What is a gesture? A meaning-based approach to defining gestural repertoires. Neuroscience & Biobehavioral Reviews, 821, 3–12. 10.1016/j.neubiorev.2017.03.008
    https://doi.org/10.1016/j.neubiorev.2017.03.008 [Google Scholar]
  65. Hopkins, W. D., Taglialatela, J. P., & Leavens, D. A.
    (2007) Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Animal behaviour, 73(2), 281–286. 10.1016/j.anbehav.2006.08.004
    https://doi.org/10.1016/j.anbehav.2006.08.004 [Google Scholar]
  66. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B.
    (2015) Emotional foundations of cognitive control. Trends in cognitive sciences, 19(3), 126–132. 10.1016/j.tics.2015.01.004
    https://doi.org/10.1016/j.tics.2015.01.004 [Google Scholar]
  67. Jarvis, E. D.
    (2013) Evolution of brain pathways for vocal learning in birds and humans. InR. C. Berwick & N. Chomsky (Eds.), Birdsong, speech, and language: exploring the evolution of mind and brain (pp. 63–107). Cambridge, Mass.: The MIT Press. 10.7551/mitpress/9322.003.0007
    https://doi.org/10.7551/mitpress/9322.003.0007 [Google Scholar]
  68. Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T. Y., & Camerer, C. F.
    (2009) The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–973. 10.1111/j.1467‑9280.2009.02402.x
    https://doi.org/10.1111/j.1467-9280.2009.02402.x [Google Scholar]
  69. Kepecs, A., & Mainen, Z. F.
    (2012) A computational framework for the study of confidence in humans and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1594), 1322–1337. 10.1098/rstb.2012.0037
    https://doi.org/10.1098/rstb.2012.0037 [Google Scholar]
  70. Kershenbaum, A., Demartsev, V., Gammon, D. E., Geffen, E., Gustison, M. L., Ilany, A., & Lameira, A. R.
    (2021) Shannon entropy as a robust estimator of Zipf’s Law in animal vocal communication repertoires. Methods in Ecology and Evolution, 12(3), 553–564. 10.1111/2041‑210X.13536
    https://doi.org/10.1111/2041-210X.13536 [Google Scholar]
  71. Keysar, B., Lin, S., & Barr, D. J.
    (2003) Limits on theory of mind use in adults. Cognition, 89(1), 25–41. 10.1016/S0010‑0277(03)00064‑7
    https://doi.org/10.1016/S0010-0277(03)00064-7 [Google Scholar]
  72. Kissine, M.
    (2016) Pragmatics as metacognitive control. Frontiers in psychology, 61, 2057. 10.3389/fpsyg.2015.02057
    https://doi.org/10.3389/fpsyg.2015.02057 [Google Scholar]
  73. Koechlin, E.
    (2014) An evolutionary computational theory of prefrontal executive function in decision-making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 20130474. 10.1098/rstb.2013.0474
    https://doi.org/10.1098/rstb.2013.0474 [Google Scholar]
  74. Koechlin, E., & Summerfield, C.
    (2007) An information theoretical approach to prefrontal executive function. Trends in cognitive sciences, 11(6), 229–235. 10.1016/j.tics.2007.04.005
    https://doi.org/10.1016/j.tics.2007.04.005 [Google Scholar]
  75. Konishi, M.
    (2004) The role of auditory feedback in birdsong. Annals of the New York Academy of Sciences, 1016(1), 463–475. 10.1196/annals.1298.010
    https://doi.org/10.1196/annals.1298.010 [Google Scholar]
  76. Koriat, A.
    (2000) The feeling of knowing: Some metatheoretical implications for consciousness and control. Consciousness and cognition, 9(2), 149–171. 10.1006/ccog.2000.0433
    https://doi.org/10.1006/ccog.2000.0433 [Google Scholar]
  77. (2008) Subjective confidence in one’s answers: the consensuality principle. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 945–959.
    [Google Scholar]
  78. Koriat, A., & Ackerman, R.
    (2010) Metacognition and mindreading: Judgments of learning for self and other during self-paced study. Consciousness and cognition, 19(1), 251–264. 10.1016/j.concog.2009.12.010
    https://doi.org/10.1016/j.concog.2009.12.010 [Google Scholar]
  79. Koriat, A., & Levy-Sadot, R.
    (1999) Processes underlying metacognitive judgments: Information-based and experience-based monitoring of one’s own knowledge. InS. Chaïken & Y. Trope (Eds.), Dual Process theories in social psychology (pp. 483–502). New York: Guilford.
    [Google Scholar]
  80. Koriat, A., Ma’ayan, H., & Nussinson, R.
    (2006) The intricate relationships between monitoring and control in metacognition: lessons for the cause-and-effect relation between subjective experience and behavior. Journal of experimental psychology: general, 135(1), 36–69. 10.1037/0096‑3445.135.1.36
    https://doi.org/10.1037/0096-3445.135.1.36 [Google Scholar]
  81. Koriat, A., Nussinson, R., Bless, H., & Shaked, N.
    (2008) Information-based and experience-based metacognitive judgments: Evidence from subjective confidence. InJ. Dunloski and R. A. Bjork, (eds.) A Handbook of Memory and Metamemory, Psychology Press, 117–136.
    [Google Scholar]
  82. Kornell, N., Son, L. K., & Terrace, H. S.
    (2007) Transfer of metacognitive skills and hint seeking in monkeys. Psychological Science, 18(1), 64–71. 10.1111/j.1467‑9280.2007.01850.x
    https://doi.org/10.1111/j.1467-9280.2007.01850.x [Google Scholar]
  83. Kuchling, F., Fields, C., & Levin, M.
    (2022) Metacognition as a consequence of competing evolutionary time scales. Entropy, 24(5), 601. 10.3390/e24050601
    https://doi.org/10.3390/e24050601 [Google Scholar]
  84. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J.
    (2013) An opportunity cost model of subjective effort and task performance. Behavioral and brain sciences, 36(6), 661–679. 10.1017/S0140525X12003196
    https://doi.org/10.1017/S0140525X12003196 [Google Scholar]
  85. Lage, C. A., Wolmarans, D. W., & Mograbi, D. C.
    (2022) An evolutionary view of self-awareness. Behavioural Processes, 1941, 104543. 10.1016/j.beproc.2021.104543
    https://doi.org/10.1016/j.beproc.2021.104543 [Google Scholar]
  86. Lak, A., Stauffer, W. R., & Schultz, W.
    (2014) Dopamine prediction error responses integrate subjective value from different reward dimensions. Proceedings of the National Academy of Sciences, 111(6), 2343–2348. 10.1073/pnas.1321596111
    https://doi.org/10.1073/pnas.1321596111 [Google Scholar]
  87. Lambert, M. L., & Osvath, M.
    (2020) Investigating information seeking in ravens (Corvus corax). Animal Cognition, 23(4), 671–680. 10.1007/s10071‑020‑01372‑5
    https://doi.org/10.1007/s10071-020-01372-5 [Google Scholar]
  88. Lameira, A. R.
    (2017) Bidding evidence for primate vocal learning and the cultural substrates for speech evolution. Neuroscience & Biobehavioral Reviews, 831, 429–439. 10.1016/j.neubiorev.2017.09.021
    https://doi.org/10.1016/j.neubiorev.2017.09.021 [Google Scholar]
  89. Liszkowski, U., Carpenter, M., & Tomasello, M.
    (2008) Twelve-month-olds communicate helpfully and appropriately for knowledgeable and ignorant partners. Cognition, 108(3), 732–739. 10.1016/j.cognition.2008.06.013
    https://doi.org/10.1016/j.cognition.2008.06.013 [Google Scholar]
  90. Macedonia, J. M., & Evans, C. S.
    (1993) Essay on contemporary issues in ethology: Variation among mammalian alarm call systems and the problem of meaning in animal signals. Ethology, 93(3), 177–197. 10.1111/j.1439‑0310.1993.tb00988.x
    https://doi.org/10.1111/j.1439-0310.1993.tb00988.x [Google Scholar]
  91. Magrath, R. D., Haff, T. M., Horn, A. G., & Leonard, M. L.
    (2010) Calling in the face of danger. Predation risk and acoustic communication by parent birds and their offspring. InJ. C. Mitani, H. J. Brockman, T. J. Roper, M. Naguib & K. E. Wynne-Edwards (Eds.), Advances in the Study of Behavior (Vol.411, pp.187–253). New York: Academic Press.
    [Google Scholar]
  92. Margoliash, D., & Nusbaum, H. C.
    (2009) Language: the perspective from organismal biology. Trends in cognitive sciences, 13(12), 505–510. 10.1016/j.tics.2009.10.003
    https://doi.org/10.1016/j.tics.2009.10.003 [Google Scholar]
  93. Marler, P.
    (1967) Animal Communication Signals: We are beginning to understand how the structure of animal signals relates to the function they serve. Science, 157(3790), 769–774. 10.1126/science.157.3790.769
    https://doi.org/10.1126/science.157.3790.769 [Google Scholar]
  94. Marler, P., Karakashian, S., & Gyger, M.
    (1991) Do animals have the option of withholding signals when communication is inappropriate? The audience effect. InC. A. Ristau (Ed.), Cognitive ethology: The minds of other animals: Essays in honor of Donald R. Griffin (pp. 187–208). Mawah: Lawrence Erlbaum Associates, Inc.
    [Google Scholar]
  95. Maynard Smith, J. & Harper, D.
    (2003) Animal signals. Oxford: Oxford University Press.
    [Google Scholar]
  96. Middlebrooks, P. G., & Sommer, M. A.
    (2012) Neuronal correlates of metacognition in primate frontal cortex. Neuron, 75(3), 517–530. 10.1016/j.neuron.2012.05.028
    https://doi.org/10.1016/j.neuron.2012.05.028 [Google Scholar]
  97. Miller, C. T. & Thomas, A. W.
    (2012) Individual recognition during bouts of antiphonal calling in common marmosets. Journal of Comparative Physiology, 1981: 337–346. 10.1007/s00359‑012‑0712‑7
    https://doi.org/10.1007/s00359-012-0712-7 [Google Scholar]
  98. Millikan, R.
    (1984) Language, Thought and Other Biological Categories , Cambridge, Mass:MIT press (ISBN 978-0262631150) 10.7551/mitpress/4124.001.0001
    https://doi.org/10.7551/mitpress/4124.001.0001 [Google Scholar]
  99. Millikan, R. G.
    (2005) Language: A biological model. New York: Oxford University Press. 10.1093/0199284768.001.0001
    https://doi.org/10.1093/0199284768.001.0001 [Google Scholar]
  100. Millikan, R. G.
    (2017) Beyond concepts: Unicepts, language, and natural information. New York/Oxford: Oxford University Press. 10.1093/oso/9780198717195.001.0001
    https://doi.org/10.1093/oso/9780198717195.001.0001 [Google Scholar]
  101. Mitani, J. C., & Watts, D. P.
    (2005) Correlates of territorial boundary patrol behaviour in wild chimpanzees. Animal Behaviour, 70(5), 1079–1086. 10.1016/j.anbehav.2005.02.012
    https://doi.org/10.1016/j.anbehav.2005.02.012 [Google Scholar]
  102. Moore, R.
    (2016) Meaning and ostension in great ape gestural communication. Animal Cognition, 19(1), 223–231. 10.1007/s10071‑015‑0905‑x
    https://doi.org/10.1007/s10071-015-0905-x [Google Scholar]
  103. Morales, J., Lau, H., & Fleming, S. M.
    (2018) Domain-general and domain-specific patterns of activity supporting metacognition in human prefrontal cortex. Journal of Neuroscience, 38(14), 3534–3546. 10.1523/JNEUROSCI.2360‑17.2018
    https://doi.org/10.1523/JNEUROSCI.2360-17.2018 [Google Scholar]
  104. Nowicki, S., & Searcy, W. A.
    (2005) Song and mate choice in birds: how the development of behavior helps us understand function. The Auk, 122(1), 1–14. 10.1093/auk/122.1.1
    https://doi.org/10.1093/auk/122.1.1 [Google Scholar]
  105. Ouattara, K., Lemasson, A., & Zuberbühler, K.
    (2009) Campbell’s monkeys use affixation to alter call meaning. PloS one, 4(11), e7808. 10.1371/journal.pone.0007808
    https://doi.org/10.1371/journal.pone.0007808 [Google Scholar]
  106. Oudeyer, P. Y., & Smith, L. B.
    (2016) How evolution may work through curiosity-driven developmental process. Topics in Cognitive Science, 8(2), 492–502. 10.1111/tops.12196
    https://doi.org/10.1111/tops.12196 [Google Scholar]
  107. Paulus, M., Proust, J., & Sodian, B.
    (2013) Examining implicit metacognition in 3.5-year-old children: An eye-tracking and pupillometric study. Frontiers in Psychology, 41, 145. 10.3389/fpsyg.2013.00145
    https://doi.org/10.3389/fpsyg.2013.00145 [Google Scholar]
  108. Petkov, C. I., & Jarvis, E. D.
    (2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in evolutionary neuroscience, 41, 12. 10.3389/fnevo.2012.00012
    https://doi.org/10.3389/fnevo.2012.00012 [Google Scholar]
  109. Pezzulo, G., & Cisek, P.
    (2016) Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends in cognitive sciences, 20(6), 414–424. 10.1016/j.tics.2016.03.013
    https://doi.org/10.1016/j.tics.2016.03.013 [Google Scholar]
  110. Pinto, A., Oates, J., Grutter, A., & Bshary, R.
    (2011) Cleaner wrasses Labroides dimidiatus are more cooperative in the presence of an audience. Current Biology, 21(13), 1140–1144. 10.1016/j.cub.2011.05.021
    https://doi.org/10.1016/j.cub.2011.05.021 [Google Scholar]
  111. Planer, R.
    (2017a) Talking About Tools: Did Early Pleistocene Hominins Have a Protolanguage?Biological Theory, 121, 211–221. 10.1007/s13752‑017‑0279‑1
    https://doi.org/10.1007/s13752-017-0279-1 [Google Scholar]
  112. (2017b) Protolanguage might have evolved before ostensive communication. Biological Theory, 121, 72–84. 10.1007/s13752‑017‑0262‑x
    https://doi.org/10.1007/s13752-017-0262-x [Google Scholar]
  113. Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S., & Watwood, S.
    (2005) Elephants are capable of vocal learning. Nature, 434(7032), 455–456. 10.1038/434455a
    https://doi.org/10.1038/434455a [Google Scholar]
  114. Proust, J.
    (2012) Metacognition and mindreading: one or two functions?in: M. Beran, J. Brandl, J. Perner & J. Proust (Eds.), The Foundations of Metacognition (pp. 234–251). Oxford: Oxford: Oxford University Press. 10.1093/acprof:oso/9780199646739.003.0015
    https://doi.org/10.1093/acprof:oso/9780199646739.003.0015 [Google Scholar]
  115. (2013) The Philosophy of Metacognition. Oxford: Oxford University Press. 10.1093/acprof:oso/9780199602162.001.0001
    https://doi.org/10.1093/acprof:oso/9780199602162.001.0001 [Google Scholar]
  116. (2015) Time and action: Impulsivity, habit, strategy. Review of Philosophy and Psychology, 6(4), 717–743. 10.1007/s13164‑014‑0224‑1
    https://doi.org/10.1007/s13164-014-0224-1 [Google Scholar]
  117. (2016) The evolution of primate communication and metacommunication. Mind & Language, 31(2), 177–203. 10.1111/mila.12100
    https://doi.org/10.1111/mila.12100 [Google Scholar]
  118. (2019) From comparative studies to interdisciplinary research on metacognition. Animal Behavior and Cognition, 6(4), 309–328. 10.26451/abc.06.04.10.2019
    https://doi.org/10.26451/abc.06.04.10.2019 [Google Scholar]
  119. (2022) The cultural evolution of information seeking, Journal of Cognition and Culture, 22(5), 467–484.
    [Google Scholar]
  120. (2023) A semantics for affordances, Philosophical Psychology.
    [Google Scholar]
  121. Pulvermüller, F., & Grisoni, L.
    (2020) Semantic prediction in brain and mind. Trends in Cognitive Sciences, 24(10), 781–784. 10.1016/j.tics.2020.07.002
    https://doi.org/10.1016/j.tics.2020.07.002 [Google Scholar]
  122. Reboul, A.
    (2011) A relevance-theoretic account of the evolution of implicit communication. Studies in Pragmatics, 13(1), 1–19.
    [Google Scholar]
  123. Rendall, D., Owren, M. J., & Ryan, M. J.
    (2009) What do animal signals mean?. Animal Behaviour, 78(2), 233–240. 10.1016/j.anbehav.2009.06.007
    https://doi.org/10.1016/j.anbehav.2009.06.007 [Google Scholar]
  124. Rhodes, M. G., & Castel, A. D.
    (2009) Metacognitive illusions for auditory information: Effects on monitoring and control. Psychonomic Bulletin & Review, 16(3), 550–554. 10.3758/PBR.16.3.550
    https://doi.org/10.3758/PBR.16.3.550 [Google Scholar]
  125. Roberts, C.
    (2012) Information Structure: Towards an integrated formal theory of pragmatics. Semantics and Pragmatics, 5(0), 61:1–69. 10.3765/sp.5.6
    https://doi.org/10.3765/sp.5.6 [Google Scholar]
  126. Roberts, W. A., Feeney, M. C., McMillan, N., MacPherson, K., Musolino, E., & Petter, M.
    (2009) Do pigeons (Columba livia) study for a test?Journal of Experimental Psychology: Animal Behavior Processes, 351, 129–142.
    [Google Scholar]
  127. Roberts, W. A., McMillan, N., Musolino, E., & Cole, M.
    (2012) Information seeking in animals: metacognition?. Comparative Cognition & Behavior Reviews, 71, 85–109. 10.3819/ccbr.2012.70005
    https://doi.org/10.3819/ccbr.2012.70005 [Google Scholar]
  128. Rosati, A. G., & Santos, L. R.
    (2016) Spontaneous metacognition in rhesus monkeys. Psychological Science, 27(9), 1181–1191. 10.1177/0956797616653737
    https://doi.org/10.1177/0956797616653737 [Google Scholar]
  129. Salmi, R., Szczupider, M., & Carrigan, J.
    (2022) A novel attention-getting vocalization in zoo-housed western gorillas. Plos one, 17(8), e0271871. 10.1371/journal.pone.0271871
    https://doi.org/10.1371/journal.pone.0271871 [Google Scholar]
  130. Santi, A., Adams, A., & Bassett, J.
    (2010) The role of keypecking during filled intervals on the judgment of time for empty and filled intervals by pigeons. Learning & Behavior, 38(1), 42–49. 10.3758/LB.38.1.42
    https://doi.org/10.3758/LB.38.1.42 [Google Scholar]
  131. Scarantino, A., & Clay, Z.
    (2015) Contextually variable signals can be functionally referential. Animal Behaviour, 100(100), e1–e8. 10.1016/j.anbehav.2014.08.017
    https://doi.org/10.1016/j.anbehav.2014.08.017 [Google Scholar]
  132. Schel, A. M., Candiotti, A., & Zuberbühler, K.
    (2010) Predator-deterring alarm call sequences in Guereza colobus monkeys are meaningful to conspecifics. Animal Behaviour, 80(5), 799–808. 10.1016/j.anbehav.2010.07.012
    https://doi.org/10.1016/j.anbehav.2010.07.012 [Google Scholar]
  133. Schlenker, P.
    (2018) Iconic pragmatics. Natural Language & Linguistic Theory, 36(3), 877–936. 10.1007/s11049‑017‑9392‑x
    https://doi.org/10.1007/s11049-017-9392-x [Google Scholar]
  134. Schlenker, P., Chemla, E., & Zuberbühler, K.
    (2016) What do monkey calls mean?. Trends in Cognitive Sciences, 20(12), 894–904. 10.1016/j.tics.2016.10.004
    https://doi.org/10.1016/j.tics.2016.10.004 [Google Scholar]
  135. Schwartz, B. L.
    (2019) Using natural ecology to predict higher cognition in human and non-human primates. Animal Behavior and Cognition, 6(4), 344–354. 10.26451/abc.06.04.13.2019
    https://doi.org/10.26451/abc.06.04.13.2019 [Google Scholar]
  136. Schwarz, N., & Clore, G. L.
    (2007) Feelings and phenomenal experiences. InA. W. Kruglanski, & Higgins, (Eds.) (2013) Social psychology: Handbook of basic principles (pp. 385–407). New York: Guilford.
    [Google Scholar]
  137. Scott-Phillips, T. C.
    (2016) Meaning in great ape communication: summarising the debate. Animal Cognition, 19(1), 233–238. 10.1007/s10071‑015‑0936‑3
    https://doi.org/10.1007/s10071-015-0936-3 [Google Scholar]
  138. Seyfarth, R. M., & Cheney, D. L.
    (2003) Signallers and recipients in animal communication. Annual review of psychology, 54(1), 145–173. 10.1146/annurev.psych.54.101601.145121
    https://doi.org/10.1146/annurev.psych.54.101601.145121 [Google Scholar]
  139. Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D.
    (2014) Supra-personal cognitive control and metacognition. Trends in cognitive sciences, 18(4), 186–193. 10.1016/j.tics.2014.01.006
    https://doi.org/10.1016/j.tics.2014.01.006 [Google Scholar]
  140. Shea, N., Godfrey-Smith, P., & Cao, R.
    (2018) Content in simple signalling systems. The British Journal for the Philosophy of Science, 691, 4. 10.1093/bjps/axw036
    https://doi.org/10.1093/bjps/axw036 [Google Scholar]
  141. Sherman, P. W.
    (1977) Nepotism and the Evolution of Alarm Calls: Alarm calls of Belding’s ground squirrels warn relatives, and thus are expressions of nepotism. Science, 197(4310), 1246–1253. 10.1126/science.197.4310.1246
    https://doi.org/10.1126/science.197.4310.1246 [Google Scholar]
  142. Skyrms, B.
    (2010) Signals: Evolution, Learning, and Information. Oxford: Oxford University Press. 10.1093/acprof:oso/9780199580828.001.0001
    https://doi.org/10.1093/acprof:oso/9780199580828.001.0001 [Google Scholar]
  143. Slocombe, K. E., & Zuberbühler, K.
    (2007) Chimpanzees modify recruitment screams as a function of audience composition. Proceedings of the National Academy of Sciences, 104(43), 17228–17233. 10.1073/pnas.0706741104
    https://doi.org/10.1073/pnas.0706741104 [Google Scholar]
  144. Sperber, D.
    (2000) Metarepresentations in an evolutionary perspective. InD. Sperber (ed.), Metarepresentations: A multidisciplinary perspective (pp. 117–137). Oxford: Oxford University Press.
    [Google Scholar]
  145. (2019) Personal notes on a shared trajectory. InK. Scott, B. Clark & R. Carston (Eds.), Relevance, Pragmatics and Interpretation (pp. 13–20). Cambridge: Cambridge University Press. 10.1017/9781108290593.002
    https://doi.org/10.1017/9781108290593.002 [Google Scholar]
  146. Sperber, D., & Wilson, D.
    (1986/1995) Relevance: Communication and cognition (Vol.1421). Cambridge, MA: Harvard University Press.
    [Google Scholar]
  147. (2002) Pragmatics, modularity and mind-reading. Mind & language, 17(1–2), 3–23. 10.1111/1468‑0017.00186
    https://doi.org/10.1111/1468-0017.00186 [Google Scholar]
  148. Sterelny, K.
    (2016) Cumulative cultural evolution and the origins of language. Biological Theory, 11(3), 173–186. 10.1007/s13752‑016‑0247‑1
    https://doi.org/10.1007/s13752-016-0247-1 [Google Scholar]
  149. Sutton, J. E., & Shettleworth, S. J.
    (2008) Memory without awareness: pigeons do not show metamemory in delayed matching to sample. Journal of Experimental Psychology: Animal Behavior Processes, 34(2), 266–282.
    [Google Scholar]
  150. Suzuki, T. N.
    (2016) Semantic communication in birds: evidence from field research over the past two decades. Ecological Research, 31(3), 307–319. 10.1007/s11284‑016‑1339‑x
    https://doi.org/10.1007/s11284-016-1339-x [Google Scholar]
  151. Takahashi, D. Y., Fenley, A. R., Teramoto, Y., Narayanan, D. Z., Borjon, J. I., Holmes, P., & Ghazanfar, A. A.
    (2015) The developmental dynamics of marmoset monkey vocal production. Science, 349(6249), 734–738. 10.1126/science.aab1058
    https://doi.org/10.1126/science.aab1058 [Google Scholar]
  152. Tang, H., Costa, V. D., Bartolo, R., and Averbeck, B. B.
    (2022) Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Reports381, 110198. 10.1016/j.celrep.2021.110198
    https://doi.org/10.1016/j.celrep.2021.110198 [Google Scholar]
  153. Terrace, H. S., & Son, L. K.
    (2009) Comparative metacognition. Current opinion in neurobiology, 19(1), 67–74. 10.1016/j.conb.2009.06.004
    https://doi.org/10.1016/j.conb.2009.06.004 [Google Scholar]
  154. Tian, J., Huang, R., Cohen, J. Y., Osakada, F., Kobak, D., Machens, C. K., & Watabe-Uchida, M.
    (2016) Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron, 91(6), 1374–1389. 10.1016/j.neuron.2016.08.018
    https://doi.org/10.1016/j.neuron.2016.08.018 [Google Scholar]
  155. Townsend, S. W., Koski, S. E., Byrne, R. W., Slocombe, K. E., Bickel, B., Boeckle, M., … & Manser, M. B.
    (2017) Exorcising Grice’s ghost: An empirical approach to studying intentional communication in animals. Biological Reviews, 92(3), 1427–1433. 10.1111/brv.12289
    https://doi.org/10.1111/brv.12289 [Google Scholar]
  156. Tsujimoto, S., Genovesio, A., & Wise, S. P.
    (2010) Evaluating self-generated decisions in frontal pole cortex of monkeys. Nature neuroscience, 13(1), 120–126. 10.1038/nn.2453
    https://doi.org/10.1038/nn.2453 [Google Scholar]
  157. van Schaik, C. P., Pradhan, G. R., & Tennie, C.
    (2019) Teaching and curiosity: sequential drivers of cumulative cultural evolution in the hominin lineage. Behavioral ecology and sociobiology, 73(1), 1–11. 10.1007/s00265‑018‑2610‑7
    https://doi.org/10.1007/s00265-018-2610-7 [Google Scholar]
  158. Watanabe, A., & Clayton, N. S.
    (2016) Hint-seeking behaviour of western scrub-jays in a metacognition task. Animal cognition, 19(1), 53–64. 10.1007/s10071‑015‑0912‑y
    https://doi.org/10.1007/s10071-015-0912-y [Google Scholar]
  159. Wheeler, B. C., & Fischer, J.
    (2012) Functionally referential signals: a promising paradigm whose time has passed. Evolutionary Anthropology: Issues, News, and Reviews, 21(5), 195–205. 10.1002/evan.21319
    https://doi.org/10.1002/evan.21319 [Google Scholar]
  160. Whiten, A., & Byrne, R. W.
    (1988) Tactical deception in primates. Behavioral and brain sciences, 11(2), 233–244. 10.1017/S0140525X00049682
    https://doi.org/10.1017/S0140525X00049682 [Google Scholar]
  161. (Eds.) (1997) Machiavellian intelligence II: Extensions and evaluations. Cambridge, Cambridge University Press. 10.1017/CBO9780511525636
    https://doi.org/10.1017/CBO9780511525636 [Google Scholar]
  162. Wich, S. A., Krützen, M., Lameira, A. R., Nater, A., Arora, N., Bastian, M. L., … & van Schaik, C. P.
    (2012) Call cultures in orang-utans?. PLoS one, 7(5), e36180. 10.1371/journal.pone.0036180
    https://doi.org/10.1371/journal.pone.0036180 [Google Scholar]
  163. Wismer, S., Pinto, A. I., Vail, A. L., Grutter, A. S., & Bshary, R.
    (2014) Variation in cleaner wrasse cooperation and cognition: influence of the developmental environment?Ethology, 120(6), 519–531. 10.1111/eth.12223
    https://doi.org/10.1111/eth.12223 [Google Scholar]
  164. Wu, S., Barr, D. J., Gann, T. M., & Keysar, B.
    (2013) How culture influences perspective taking: differences in correction, not integration. Frontiers in human neuroscience, 71, 822. 10.3389/fnhum.2013.00822
    https://doi.org/10.3389/fnhum.2013.00822 [Google Scholar]
  165. Xiao, L., Chattree, G., Oscos, F. G., Cao, M., Wanat, M. J., & Roberts, T. F.
    (2018) A basal ganglia circuit sufficient to guide birdsong learning. Neuron, 98(1), 208–221. 10.1016/j.neuron.2018.02.020
    https://doi.org/10.1016/j.neuron.2018.02.020 [Google Scholar]
  166. Zakrzewski, A. C., Perdue, B. M., Beran, M. J., Church, B. A., & Smith, J. D.
    (2014) Cashing out: The decisional flexibility of uncertainty responses in rhesus macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Learning and Cognition, 40(4), 490–501.
    [Google Scholar]
  167. Zuberbühler, K.
    (2008) Audience effects. Current Biology, 18(5), 189–190. 10.1016/j.cub.2007.12.041
    https://doi.org/10.1016/j.cub.2007.12.041 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/elt.00046.pro
Loading
/content/journals/10.1075/elt.00046.pro
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error