1887
Volume 19, Issue 2-3
  • ISSN 1568-1475
  • E-ISSN: 1569-9773
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The interest of neuroscience has been aimed at the investigation of the neural bases underlying gestural communication. This research explored the intra- and inter-brain connectivity between encoder and decoder. Specifically, adopting a “hyperscanning paradigm” with the functional Near-infrared Spectroscopy (fNIRS) cerebral connectivity in oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin levels were revealed during the reproduction of affective, social, and informative gestures of different valence. Results showed an increase of intra- and inter-brain connectivity in dorsolateral prefrontal cortex for affective gestures, in superior frontal gyrus for social gestures and in frontal eyes field for informative gestures. Moreover, encoder showed a higher intra-brain connectivity in posterior parietal areas more than decoder. Finally, an increasing of inter-brain connectivity more than intra-brain (ConIndex) was observed in left regions for positive gestures. The present research has explored how the individuals neural tuning mechanisms turn out to be strongly influenced by the nature of specific gestures.

Loading

Article metrics loading...

/content/journals/10.1075/gest.20013.bal
2021-09-28
2022-01-25
Loading full text...

Full text loading...

References

  1. Alibali, Martha W., Kita, Sotaro, & Young, Amanda J.
    (2000) Gesture and the process of speech production: We think, therefore we gesture. Language and Cognitive Processes, 15 (6), 593–613. doi:  10.1080/016909600750040571
    https://doi.org/10.1080/016909600750040571 [Google Scholar]
  2. Baeken, Chris, Van Schuerbeek, Peter, De Raedt, Rudi, De Mey, Johan, Vanderhasselt, Marie A., Bossuyt, Axel, & Luypaert, Robert
    (2011) The effect of one left-sided dorsolateral prefrontal sham-controlled HF-rTMS session on approach and withdrawal related emotional neuronal processes. Clinical Neurophysiology, 122 (11), 2217–2226. doi:  10.1016/j.clinph.2011.04.009
    https://doi.org/10.1016/j.clinph.2011.04.009 [Google Scholar]
  3. Baker, Joseph M., Liu, Ning, Cui, Xu, Vrticka, Pascal, Saggar, Manish, Hosseini, Hadi S. M., & Reiss, Allan L.
    (2016) Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Scientific Reports, 6, 26492. doi:  10.1038/srep26492
    https://doi.org/10.1038/srep26492 [Google Scholar]
  4. Balconi, Michela
    (2010) Neuropsychology of communication. Springer Science & Business Media. doi:  10.1007/978‑88‑470‑1584‑5
    https://doi.org/10.1007/978-88-470-1584-5 [Google Scholar]
  5. Balconi, Michela & Canavesio, Ylenia
    (2013) High-frequency rTMS improves facial mimicry and detection responses in an empathic emotional task. Neuroscience, 236, 12–20. doi:  10.1016/j.neuroscience.2012.12.059
    https://doi.org/10.1016/j.neuroscience.2012.12.059 [Google Scholar]
  6. Balconi, Michela & Fronda, Giulia
    (2020a) The use of hyperscanning to investigate the role of social, affective, and informative gestures in non-verbal communication. Electrophysiological (EEG) and inter-brain connectivity evidence. Brain Sciences, 10 (1), 29. doi:  10.3390/brainsci10010029
    https://doi.org/10.3390/brainsci10010029 [Google Scholar]
  7. (2020b) Gesture in hyperscanning during observation. Inter-brain connectivity. Neuropsychological Trends, 28, 59–81. doi:  10.7358/neur‑2020‑028‑bal2
    https://doi.org/10.7358/neur-2020-028-bal2 [Google Scholar]
  8. (2021) Intra-brain connectivity vs. inter-brain connectivity in gestures reproduction: What relationship?. Brain Sciences, 11 (5), 577. doi:  10.3390/brainsci11050577
    https://doi.org/10.3390/brainsci11050577 [Google Scholar]
  9. Balconi, Michela, Fronda, Giulia, & Bartolo, Angela
    (2020) Affective, social, and informative gestures reproduction in human interaction: Hyperscanning and brain connectivity. Journal of Motor Behavior, 53 (3), 296–315. doi:  10.1080/00222895.2020.1774490
    https://doi.org/10.1080/00222895.2020.1774490 [Google Scholar]
  10. Balconi, Michela, Grippa, Elisabetta, & Vanutelli, Maria Elide
    (2015) Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study. Social Cognitive and Affective Neuroscience, 10 (12), 1607–1614. doi:  10.1093/scan/nsv041
    https://doi.org/10.1093/scan/nsv041 [Google Scholar]
  11. Balconi, Michela & Vanutelli, Maria Elide
    (2017) Cooperation and competition with hyperscanning methods: review and future application to emotion domain. Frontiers in Computational Neuroscience, 11, 86. doi:  10.3389/fncom.2017.00086
    https://doi.org/10.3389/fncom.2017.00086 [Google Scholar]
  12. Bhat, Anjana N., Hoffman, Michael D., Trost, Susanna L., Culotta, McKenzie L., Eilbott, Jeffrey, Tsuzuki, Daisuke, & Pelphrey, Kevin A.
    (2017) Cortical activation during action observation, action execution, and interpersonal synchrony in adults: a functional near-infrared spectroscopy (fNIRS) study. Frontiers in Human Neuroscience, 11, 431. doi:  10.3389/fnhum.2017.00431
    https://doi.org/10.3389/fnhum.2017.00431 [Google Scholar]
  13. Bianchi, Marta, Cosseddu, Maura, Cotelli, Maria, Manenti, Rosa, Brambilla, Michela, Rizzetti, Cristina M., […], & Borroni, Barbara
    (2015) Left parietal cortex transcranial direct current stimulation enhances gesture processing in corticobasal syndrome. European Journal of Neurology, 22 (9), 1317–1322. doi:  10.1111/ene.12748
    https://doi.org/10.1111/ene.12748 [Google Scholar]
  14. Bressem, Jana & Müller, Cornelia
    (2017) The “Negative-Assessment-Construction” – A multimodal pattern based on a recurrent gesture?Linguist Vanguard, 3 (s1). doi:  10.1515/lingvan‑2016‑0053
    https://doi.org/10.1515/lingvan-2016-0053 [Google Scholar]
  15. Cassell, Justine, Sullivan, Joseph, Prevost, Scott, & Churchill, Elizabeth F.
    (2001) Embodied dialog systems. Cambridge, MA: MIT Press.
    [Google Scholar]
  16. Centelles, Laurie, Assaiante, Christine, Nazarian, Bruno, Anton, Jean L., & Schmitz, Christina
    (2011) Recruitment of both the mirror and the mentalizing networks when observing social interactions depicted by point-lights: A neuroimaging study. PLoS One, 6: e15749. doi:  10.1371/journal.pone.0015749
    https://doi.org/10.1371/journal.pone.0015749 [Google Scholar]
  17. Chaudhary, Ujwal, Hall, Michael, DeCerce, Joe, Rey, Gustavo, & Godavarty, Anuradha
    (2011) Frontal activation and connectivity using near-infrared spectroscopy: Verbal fluency language study. Brain Research Bulletin, 84 (3), 197–205. doi:  10.1016/j.brainresbull.2011.01.002
    https://doi.org/10.1016/j.brainresbull.2011.01.002 [Google Scholar]
  18. Cui, Xu, Bryant, Daniel M., & Reiss, Allan L.
    (2012) NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage, 59 (3), 2430–2437. doi:  10.1016/j.neuroimage.2011.09.003
    https://doi.org/10.1016/j.neuroimage.2011.09.003 [Google Scholar]
  19. Davidson, Richard J.
    (1992) Emotion and affective style: Hemispheric substrates. Psychological Science, 3 (1), 39–43. doi:  10.1111/j.1467‑9280.1992.tb00254.x
    https://doi.org/10.1111/j.1467-9280.1992.tb00254.x [Google Scholar]
  20. Enfield, Nick J., Kita, Sotaro, & de Ruiter, Jan P.
    (2007) Primary and secondary pragmatic functions of pointing gestures. Journal of Pragmatics, 39 (10), 1722–1741. doi:  10.1016/j.pragma.2007.03.001
    https://doi.org/10.1016/j.pragma.2007.03.001 [Google Scholar]
  21. Friston, Karl J.
    (2011) Functional and effective connectivity: a review. Brain Connectivity, 1 (1), 13–36. doi:  10.1089/brain.2011.0008
    https://doi.org/10.1089/brain.2011.0008 [Google Scholar]
  22. Fronda, Giulia & Balconi, Michela
    (2020) The effect of interbrain synchronization in gesture observation: A fNIRS study. Brain and Behavior, e01663. doi:  10.1002/brb3.1663
    https://doi.org/10.1002/brb3.1663 [Google Scholar]
  23. Gallagher, Helen L. & Frith, Christopher D.
    (2004) Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures. Neuropsychologia, 42 (13), 1725–1736. doi:  10.1016/j.neuropsychologia.2004.05.006
    https://doi.org/10.1016/j.neuropsychologia.2004.05.006 [Google Scholar]
  24. Gentilucci, Maurizio, Bernardis, Paolo, Crisi, Girolamo, & Volta, Riccardo D.
    (2006) Repetitive transcranial magnetic stimulation of Broca’s area affects verbal responses to gesture observation. Journal of Cognitive Neuroscience, 18 (7), 1059–1074. doi:  10.1162/jocn.2006.18.7.1059
    https://doi.org/10.1162/jocn.2006.18.7.1059 [Google Scholar]
  25. Harmon-Jones, Eddie
    (2003) Clarifying the emotive functions of asymmetrical frontal cortical activity. Psychophysiology, 40 (6), 838–848. doi:  10.1111/1469‑8986.00121
    https://doi.org/10.1111/1469-8986.00121 [Google Scholar]
  26. Hasson, Uri, Ghazanfar, Asif A., Galantucci, Bruno, Garrod, Simon, & Keysers, Christian
    (2012) Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16 (2), 114–121. doi:  10.1016/j.tics.2011.12.007
    https://doi.org/10.1016/j.tics.2011.12.007 [Google Scholar]
  27. Holle, Henning, Gunter, Thomas C., Rüschemeyer, Shirley-Ann, Hennenlotter, Andreas, & Iacoboni, Marco
    (2008) Neural correlates of the processing of co-speech gestures. Neuroimage, 39 (4), 2010–2024. doi:  10.1016/j.neuroimage.2007.10.055
    https://doi.org/10.1016/j.neuroimage.2007.10.055 [Google Scholar]
  28. Holle, Henning, Obleser, Jonas, Rueschemeyer, Shirley-Ann, & Gunter, Thomas C.
    (2010) Integration of iconic gestures and speech in left superior temporal areas boosts speech comprehension under adverse listening conditions. Neuroimage, 49 (1), 875–884. doi:  10.1016/j.neuroimage.2009.08.058
    https://doi.org/10.1016/j.neuroimage.2009.08.058 [Google Scholar]
  29. Holler, Judith, Shovelton, Heather, & Beattie, Geoffrey
    (2009) Do iconic hand gestures really contribute to the communication of semantic information in a face-to-face context?. Journal of Nonverbal Behavior, 33 (2), 73–88. doi:  10.1007/s10919‑008‑0063‑9
    https://doi.org/10.1007/s10919-008-0063-9 [Google Scholar]
  30. Holper, Lisa, Scholkmann, Felix, & Wolf, Martin
    (2014) The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy. Behavioural Brain Research, 270, 95–107. doi:  10.1016/j.bbr.2014.04.056
    https://doi.org/10.1016/j.bbr.2014.04.056 [Google Scholar]
  31. Honk, Jack V. & Schutter, Dennis J. L. G.
    (2006) From affective valence to motivational direction: the frontal asymmetry of emotion revised. Psychological Science, 17 (11), 963–965. doi:  10.1111/j.1467‑9280.2006.01813.x
    https://doi.org/10.1111/j.1467-9280.2006.01813.x [Google Scholar]
  32. Huxham, Chris, Dick, Bob, & Stringer, Ernie
    (2009) Theory in action research. Action Research, 7, 5–12. doi:  10.1177/1476750308099594
    https://doi.org/10.1177/1476750308099594 [Google Scholar]
  33. Johnson, David W. & Johnson, Roger T.
    (2005) New developments in social interdependence theory. Genetic, Social, and General Psychology Monographs, 131 (4), 285–358. doi:  10.3200/MONO.131.4.285‑358
    https://doi.org/10.3200/MONO.131.4.285-358 [Google Scholar]
  34. Kalbe, Elke, Schlegel, Marius, Sack, Alexander T., Nowak, Dennis A., Dafotakis, Manuel, Bangard, Christopher, […], & Kessler, Josef
    (2010) Dissociating cognitive from affective theory of mind: a TMS study. Cortex, 46 (6), 769–780. doi:  10.1016/j.cortex.2009.07.010
    https://doi.org/10.1016/j.cortex.2009.07.010 [Google Scholar]
  35. Kendon, Adam
    (2017) Reflections on the “gesture-first” hypothesis of language origins. Psychonomic Bulletin & Review, 24 (1), 163–170. doi:  10.3758/s13423‑016‑1117‑3
    https://doi.org/10.3758/s13423-016-1117-3 [Google Scholar]
  36. Kita, Sotaro
    (2000) How representational gestures help speaking. InDavid McNeill. (Ed.), Language and gesture (pp.162–185). Cambridge, UK: Cambridge University Press. 10.1017/CBO9780511620850.011
    https://doi.org/10.1017/CBO9780511620850.011 [Google Scholar]
  37. (2009) Cross-cultural variation of speech-accompanying gesture: A review. Language and Cognitive Processes, 24 (2), 145–167. doi:  10.1080/01690960802586188
    https://doi.org/10.1080/01690960802586188 [Google Scholar]
  38. Knoblich, Gunther, Butterfill, Stephen, & Sebanz, Natalie
    (2011) Psychological research on joint action: Theory and data. InB. Ross. (Ed.), The psychology of learning and motivation (Vol.54, pp.59–101). Burlington, MA: Academic Press.
    [Google Scholar]
  39. Koehler, Saskia, Egetemeir, Johanna, Stenneken, Prisca, Koch, Stefan P., Pauli, Paul, Fallgatter, Andreas J., & Herrmann, Martin J.
    (2012) The human execution/observation matching system investigated with a complex everyday task: a functional near-infrared spectroscopy (fNIRS) study. Neuroscience Letters, 508 (2), 73–77. doi:  10.1016/j.neulet.2011.12.021
    https://doi.org/10.1016/j.neulet.2011.12.021 [Google Scholar]
  40. Krauss, Robert M., Chen, Yihsiu, & Chawla, Purnima
    (1996) Nonverbal behavior and nonverbal communication: What do conversational hand gestures tell us?. InM. P. Zanna. (Ed.), Advances in experimental social psychology (Vol.28, pp.389–450). Academic Press.
    [Google Scholar]
  41. Kron, Assaf, Pilkiw, Maryna, Banaei, Jasmin, Goldstein, Ariel, & Anderson, Adam K.
    (2015) Are valence and arousal separable in emotional experience?Emotion, 15 (1), 35–44. doi:  10.1037/a0038474
    https://doi.org/10.1037/a0038474 [Google Scholar]
  42. Lindenberger, Ulman, Li, Shu C., Gruber, Walter, & Müller, Viktor
    (2009) Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience, 10 (1), 22. doi:  10.1186/1471‑2202‑10‑22
    https://doi.org/10.1186/1471-2202-10-22 [Google Scholar]
  43. Lindquist, Kristen A., Satpute, Ajay B., & Gendron, Maria
    (2015) Does language do more than communicate emotion?Current Directions in Psychological Science, 24 (2), 99–108. doi:  10.1177/0963721414553440
    https://doi.org/10.1177/0963721414553440 [Google Scholar]
  44. Liu, Tao, Saito, Hirofumi, & Oi, Misato
    (2015) Role of the right inferior frontal gyrus in turn-based cooperation and competition: a near-infrared spectroscopy study. Brain and Cognition, 99, 17–23. doi:  10.1016/j.bandc.2015.07.001
    https://doi.org/10.1016/j.bandc.2015.07.001 [Google Scholar]
  45. Lotze, Martin, Heymans, Ulrike, Birbaumer, Niels, Veit, Ralf, Erb, Michael, Flor, Herta, & Halsband, Ulrike
    (2006) Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia, 44 (10), 1787–1795. doi:  10.1016/j.neuropsychologia.2006.03.016
    https://doi.org/10.1016/j.neuropsychologia.2006.03.016 [Google Scholar]
  46. Marcos, Luis R.
    (1979) Nonverbal behavior and thought processing. Archives of General Psychiatry, 36 (9), 940–943. doi:  10.1001/archpsyc.1979.01780090026003
    https://doi.org/10.1001/archpsyc.1979.01780090026003 [Google Scholar]
  47. Matsuda, Goh & Hiraki, Kazuo
    (2006) Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: A NIRS study of children. Neuroimage, 29 (3), 706–711. doi:  10.1016/j.neuroimage.2005.08.019
    https://doi.org/10.1016/j.neuroimage.2005.08.019 [Google Scholar]
  48. Molenberghs, Pascal, Cunnington, Ross, & Mattingley, Jason B.
    (2009) Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience & Biobehavioral Reviews, 33 (7), 975–980. doi:  10.1016/j.neubiorev.2009.03.010
    https://doi.org/10.1016/j.neubiorev.2009.03.010 [Google Scholar]
  49. Molenberghs, Pascla, Cunnington, Ross, & Mattingley, Jason B.
    (2012) Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36 (1), 341–349. doi:  10.1016/j.neubiorev.2011.07.004
    https://doi.org/10.1016/j.neubiorev.2011.07.004 [Google Scholar]
  50. Montague, Read P., Berns, Gregory S., Cohen, Jonathan D., McClure, Samuel M., Pagnoni, Giuseppe, Dhamala, Mukesh, […], & Fisher, Ronald E.
    (2002) Hyperscanning: Simultaneous fMRI during linked social interactions. Neuroimage, 16 (4), 1159–1164. doi:  10.1006/nimg.2002.1150
    https://doi.org/10.1006/nimg.2002.1150 [Google Scholar]
  51. Montero-Hernandez, Samuel, Orihuela-Espina, Felipe, Sucar, Luis E., Pinti, Paola, Hamilton, Antonia, Burgess, Paul, & Tachtsidis, Ilias
    (2018) Estimating functional connectivity symmetry between oxy-and deoxy-haemoglobin: implications for fNIRS connectivity analysis. Algorithms, 11 (5), 70. doi:  10.3390/a11050070
    https://doi.org/10.3390/a11050070 [Google Scholar]
  52. Morrel-Samuels, Palmer & Krauss, Robert M.
    (1992) Word familiarity predicts temporal asynchrony of hand gestures and speech. Journal of Experimental Psychology: Learning Memory and Cognition, 18 (3), 615–622. doi:  10.1037/0278‑7393.18.3.615
    https://doi.org/10.1037/0278-7393.18.3.615 [Google Scholar]
  53. Müller, Viktor & Lindenberger, Ulman
    (2011) Cardiac and respiratory patterns synchronize between persons during choir singing. PLoS One, 6: e24893. doi:  10.1371/journal.pone.0024893
    https://doi.org/10.1371/journal.pone.0024893 [Google Scholar]
  54. Nagpal, Jaya, Nicoladis, Elena, & Marentette, Paula
    (2011) Predicting individual differences in L2 speakers’ gestures. International Journal of Bilingualism, 15 (2), 205–214. doi:  10.1177/1367006910381195
    https://doi.org/10.1177/1367006910381195 [Google Scholar]
  55. Nicoladis, Elena, Pika, Simone, Yin, Hui U. I., & Marentette, Paula
    (2007) Gesture use in story recall by Chinese-English bilinguals. Applied Psycholinguistics, 28 (4), 721–735. doi:  10.1017/S0142716407070385
    https://doi.org/10.1017/S0142716407070385 [Google Scholar]
  56. Oi, Misato, Saito, Hirofumi, Li, Zongfeng, & Zhao, Wenjun
    (2013) Co-speech gesture production in an animation–narration task by bilinguals: A near-infrared spectroscopy study. Brain and Language, 125 (1), 77–81. doi:  10.1016/j.bandl.2013.01.004
    https://doi.org/10.1016/j.bandl.2013.01.004 [Google Scholar]
  57. Pelphrey, Kevin A., Morris, James P., & Mccarthy, Gregory
    (2004) Grasping the intentions of others: the perceived intentionality of an action influences activity in the superior temporal sul- cus during social perception. Journal of Cognitive Neuroscience, 16 (10), 1706–1716. doi:  10.1162/0898929042947900
    https://doi.org/10.1162/0898929042947900 [Google Scholar]
  58. Péran, Patrice, Démonet, Jean F., Cherubini, Andrea, Carbebat, Dominique, Caltagirone, Carlo, & Sabatini, Umberto
    (2010) Mental representations of action: the neural correlates of the verbal and motor components. Brain Research, 1328, 89–103. doi:  10.1016/j.brainres.2010.02.082
    https://doi.org/10.1016/j.brainres.2010.02.082 [Google Scholar]
  59. Pinti, Paola, Aichelburg, Clarisse, Lind, Frida, Power, Sarah, Swingler, Elizabeth, Merla, Arcangelo, […], & Tachtsidis, Ilias
    (2015) Using fiberless, wear- able fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualized Experiments, 106, e53336. doi:  10.3791/53336
    https://doi.org/10.3791/53336 [Google Scholar]
  60. Pinti, Paola, Scholkmann, Felix, Hamilton, Antonia, Burgess, Paul, & Tachtsidis, Ilias
    (2019) Current status and issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear model framework. Frontiers in Human Neuroscience, 12, 505. 10.3389/fnhum.2018.00505
    https://doi.org/10.3389/fnhum.2018.00505 [Google Scholar]
  61. Rauscher, Frances H., Krauss, Robert M., & Chen, Yihsiu S.
    (1996) Gesture, speech, and lexical access: The role of lexical movements in speech production. Psychological Science, 7 (4), 226–231. doi:  10.1111/j.1467‑9280.1996.tb00364.x
    https://doi.org/10.1111/j.1467-9280.1996.tb00364.x [Google Scholar]
  62. Ruby, Perrine & Decety, Jean
    (2004) How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16 (6), 988–999. doi:  10.1162/0898929041502661
    https://doi.org/10.1162/0898929041502661 [Google Scholar]
  63. Sadato, Norihiro, Campbell, Gregory, Ibanez, Vicente, Deiber, Marie P., & Hallett, Mark
    (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience, 16 (8), 2693–2700. doi:  10.1523/JNEUROSCI.16‑08‑02691.1996
    https://doi.org/10.1523/JNEUROSCI.16-08-02691.1996 [Google Scholar]
  64. Sato, Wataru, Kochiyama, Takanori, Uono, Shota, & Yoshikawa, Sakiko
    (2009) Commonalities in the neural mechanisms underlying auto- matic attentional shifts by gaze, gestures, and symbols. Neuroimage, 45 (3), 984–992. doi:  10.1016/j.neuroimage.2008.12.052
    https://doi.org/10.1016/j.neuroimage.2008.12.052 [Google Scholar]
  65. Schmidt, Louis A. & Trainor, Laurel J.
    (2001) Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition & Emotion, 15 (4), 48–500. doi:  10.1080/02699930126048
    https://doi.org/10.1080/02699930126048 [Google Scholar]
  66. Scholkmann, Felix, Kleiser, Stefan, Metz, Andreas J., Zimmermann, Raphael, Pavia, Juan M., Wolf, Ursula, & Wolf, Martin
    (2014) A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85, 6–27. doi:  10.1016/j.neuroimage.2013.05.004
    https://doi.org/10.1016/j.neuroimage.2013.05.004 [Google Scholar]
  67. Seo, Ju-Hwan, Yang, Jeong-Yean, & Kwon, Dong-Soo
    (2015) Learning and reproduction of valence-related communicative gesture. In2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp.237–242). doi:  10.1109/HUMANOIDS.2015.7363541
    https://doi.org/10.1109/HUMANOIDS.2015.7363541 [Google Scholar]
  68. Shafir, Tal, Tsachor, Rachelle P., & Welch, Kathleen B.
    (2016) Emotion regulation through movement: unique sets of movement characteristics are associated with and enhance basic emotions. Frontiers in Psychology, 6, 2030. doi:  10.3389/fpsyg.2015.02030
    https://doi.org/10.3389/fpsyg.2015.02030 [Google Scholar]
  69. Shima, Keisetsu & Tanji, Jun
    (2000) Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology, 84 (4), 2148–2160. doi:  10.1152/jn.2000.84.4.2148
    https://doi.org/10.1152/jn.2000.84.4.2148 [Google Scholar]
  70. Skipper, Jeremy I., Goldin-Meadow, Susan, Nusbaum, Howard C., & Small, Steven L.
    (2007) Speech-associated gestures, Broca’s area, and the human mirror system. Brain and Language, 101 (3), 260–277. doi:  10.1016/j.bandl.2007.02.008
    https://doi.org/10.1016/j.bandl.2007.02.008 [Google Scholar]
  71. (2009) Gestures orchestrate brain networks for language understanding. Current Biology, 19 (8), 661–667. doi:  10.1016/j.cub.2009.02.051
    https://doi.org/10.1016/j.cub.2009.02.051 [Google Scholar]
  72. Szymański, Jędrzej, Janikiewicz, Justyna, Michalska, Bernadeta, Patalas-Krawczyk, Paulina, Perrone, Mariasole, Ziółkowski, Wieslaw, […], & Więckowski, Mariusz R.
    (2017) Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. International Journal of Molecular Sciences, 18 (7), 1576. doi:  10.3390/ijms18071576
    https://doi.org/10.3390/ijms18071576 [Google Scholar]
  73. Tomasello, Michael, Carpenter, Malinda, Call, Josep, Behne, Tanya, & Moll, Henrike
    (2005) Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28 (5), 675–691. doi:  10.1017/S0140525X05000129
    https://doi.org/10.1017/S0140525X05000129 [Google Scholar]
  74. Toppi, Jlenia, Borghini, Gianluca, Petti, Manuela, He, Eric J., De Giusti, Vittorio, He, Bin, […], & Babiloni, Fabio
    (2016) Investigating cooperative behavior in ecological settings: An EEG hyperscanning study. PLoS One, 11, e0154236. doi:  10.1371/journal.pone.0154236
    https://doi.org/10.1371/journal.pone.0154236 [Google Scholar]
  75. Tsalamlal, Mohamed Y., Amorim, Michel A., Martin, Jean C., & Ammi, Mehdi
    (2016) Combining facial expression and touch for perceiving emotional valence. IEEE Transactions on Affective Computing, 9 (4), 437–449. doi:  10.1109/TAFFC.2016.2631469
    https://doi.org/10.1109/TAFFC.2016.2631469 [Google Scholar]
  76. Walker, Robin, Techawachirakul, Puncharat, & Haggard, Patrick
    (2009) Frontal eye field stimulation modulates the balance of salience between target and distractors. Brain Research, 1270, 54–63. doi:  10.1016/j.brainres.2009.02.081
    https://doi.org/10.1016/j.brainres.2009.02.081 [Google Scholar]
  77. Wang, Feng, Xu, Jie, Wang, Xin, & Cui, Shuguang
    (2017) Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless Communications, 17 (3), 1784–1797. doi:  10.1109/TWC.2017.2785305
    https://doi.org/10.1109/TWC.2017.2785305 [Google Scholar]
  78. Wheaton, Kylie J., Thompson, James C., Syngeniotis, Ari, Abbott, David F., & Puce, Aina
    (2004) Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage, 22 (1), 277–288. doi:  10.1016/j.neuroimage.2003.12.043
    https://doi.org/10.1016/j.neuroimage.2003.12.043 [Google Scholar]
  79. Wheland, David, Joshi, Anand, McMahon, Katie L., Hansell, Narelle, Martin, Nicholas, Wright, Margaret, […], & Leahy, Richard
    (2012) Robust identification of partial-correlation based networks with applications to cortical thickness data. In2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (pp.1551–1554). doi:  10.1109/ISBI.2012.6235869
    https://doi.org/10.1109/ISBI.2012.6235869 [Google Scholar]
  80. Wildgruber, Dirk, Hertrich, Ingo, Riecker, Axel, Erb, Michael, Anders, Simon, Grodd, Walfgang, & Ackermann, Hermann
    (2004) Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cerebral Cortex, 14(12), 1384–1389. doi:  10.1093/cercor/bhh099
    https://doi.org/10.1093/cercor/bhh099 [Google Scholar]
  81. Willems, Roel M., Özyürek, Aslı, & Hagoort, Peter
    (2007) When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17 (10), 2322–2333. doi:  10.1093/cercor/bhl141
    https://doi.org/10.1093/cercor/bhl141 [Google Scholar]
  82. Zhao, Xiaohu, Xi, Qian, Wang, Peijun, Li, Chunbo, & He, Hongjian
    (2014) Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study. Korean Journal of Radiology, 15 (4), 523–529. doi:  10.3348/kjr.2014.15.4.523
    https://doi.org/10.3348/kjr.2014.15.4.523 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/gest.20013.bal
Loading
/content/journals/10.1075/gest.20013.bal
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): decoder; encoder; fNIRS; gestures; hyperscanning; inter-brain connectivity
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error