1887
Volume 22, Issue 1
  • ISSN 1568-1475
  • E-ISSN: 1569-9773
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Teachers often use gestures to connect representations of mathematical ideas. This research examined (1) whether such linking gestures help students understand connections among representations and (2) whether sets of gestures that include repeated handshapes and motions – termed gestural  – are particularly beneficial. Undergraduates viewed one of four video lessons connecting two representations of multiplication. In the lesson, the instructor produced beat gestures that did not link the representations. In the lesson, the instructor used gestures to link representations, but the gestures did not form a catchment. In the lesson, the instructor highlighted corresponding elements of the two representations using identical gestures. In the lesson, the instructor highlighted non-corresponding elements of the two representations using identical gestures. Participants who saw the lesson with the consistent catchment – which highlighted similarities between representations – were most likely to understand the novel representation and to report learning from the lesson.

Loading

Article metrics loading...

/content/journals/10.1075/gest.21021.don
2023-11-14
2024-07-16
Loading full text...

Full text loading...

References

  1. Adesope, O. O., & Nesbit, J. C.
    (2012) Verbal redundancy in multimedia learning environments: A meta-analysis. Journal of Educational Psychology, 1041, 250–263. 10.1037/a0026147
    https://doi.org/10.1037/a0026147 [Google Scholar]
  2. Ainsworth, S.
    (2006) DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. 10.1016/j.learninstruc.2006.03.001
    https://doi.org/10.1016/j.learninstruc.2006.03.001 [Google Scholar]
  3. Alibali, M. W., & Nathan, M. J.
    (2007) Teachers’ gestures as a means of scaffolding students’ understanding: Evidence from an early algebra lesson. InR. Goldman, R. Pea, B. Barron, & S. J. Derry. (Eds.), Video research in the learning sciences (pp.349–365). Mahwah, NJ: Erlbaum.
    [Google Scholar]
  4. (2012) Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 211, 247–286. 10.1080/10508406.2011.611446
    https://doi.org/10.1080/10508406.2011.611446 [Google Scholar]
  5. Alibali, M. W., Nathan, M. J., Church, R. B., Wolfgram, M. S., Kim, S., & Knuth, E. J.
    (2013) Gesture and speech in mathematics lessons: Forging common ground by resolving trouble spots. ZDM – International Journal on Mathematics Education, 451, 425–440. 10.1007/s11858‑012‑0476‑0
    https://doi.org/10.1007/s11858-012-0476-0 [Google Scholar]
  6. Alibali, M. W., Nathan, M. J., & Fujimori, Y.
    (2011) Gestures in the mathematics classroom: What’s the point?InN. L. Stein & S. W. Raudenbush. (Eds.), Developmental Cognitive Science Goes to School (pp.219–234). New York, NY: Routledge.
    [Google Scholar]
  7. Alibali, M. W., Nathan, M. J., Wolfgram, M. S., Church, R. B., Jacobs, S. A., Martinez, C. J., & Knuth, E. J.
    (2014) How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and Instruction, 32(1), 65–100. 10.1080/07370008.2013.858161
    https://doi.org/10.1080/07370008.2013.858161 [Google Scholar]
  8. Alibali, M. W., Young, A. G., Crooks, N. M., Yeo, A., Wolfgram, M. S., Ledesma, I. M., Church, R. B., & Knuth, E. J.
    (2013) Students learn more when their teacher has learned to gesture effectively. Gesture, 13(2), 210–233. 10.1075/gest.13.2.05ali
    https://doi.org/10.1075/gest.13.2.05ali [Google Scholar]
  9. Brown, S. A., & Alibali, M. W.
    (2018) What kind of problem is this? Labels guide generalization of math strategies [Abstract]. InT. T. Rogers, M. Rau, X. Zhu, & C. W. Kalish. (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (p.2818). Austin TX: Cognitive Science Society.
    [Google Scholar]
  10. (2019, March). (In)consistent labeling of math strategies and problems guides strategy choice. Poster presented atthe Biennial Meeting of the Society for Research in Child Development, Baltimore, MD.
    [Google Scholar]
  11. Bruner, J. S.
    (1966) Towards a theory of instruction. Cambridge, MA: Belknap Press.
    [Google Scholar]
  12. Carpenter, S. K., Wilford, M. M., Kornell, N., & Mullaney, K. M.
    (2013) Appearances can be deceiving: Instructor fluency increases perceptions of learning without increasing actual learning. Psychonomic Bulletin & Review, 20(6), 1350–1356. 10.3758/s13423‑013‑0442‑z
    https://doi.org/10.3758/s13423-013-0442-z [Google Scholar]
  13. Carpenter, S. K., Northern, P. E., Tauber, S. “U.”, & Toftness, A. R.
    (2020) Effects of lecture fluency and instructor experience on students’ judgments of learning, test scores, and evaluations of instructors. Journal of Experimental Psychology: Applied, 26(1), 26–39. 10.1037/xap0000234
    https://doi.org/10.1037/xap0000234 [Google Scholar]
  14. Church, R. B., Ayman-Nolley, S., & Mahootian, S.
    (2004) The role of gesture in bilingual education: Does gesture enhance learning?International Journal of Bilingual Education and Bilingualism, 71, 303–319. 10.1080/13670050408667815
    https://doi.org/10.1080/13670050408667815 [Google Scholar]
  15. Cook, S. W., Duffy, R. G., & Fenn, K. M.
    (2013) Consolidation and transfer of learning after observing hand gesture. Child Development, 84(6), 1863–1871. 10.1111/cdev.12097
    https://doi.org/10.1111/cdev.12097 [Google Scholar]
  16. Crooks, N. M., & Alibali, M. W.
    (2014) Defining and measuring conceptual knowledge in mathematics. Developmental Review, 341, 344–377. 10.1016/j.dr.2014.10.001
    https://doi.org/10.1016/j.dr.2014.10.001 [Google Scholar]
  17. Donovan, A. M., & Fyfe, E. R.
    (2022) Connecting concrete objects and abstract symbols promotes children’s place value knowledge. Educational Psychology, 42(8), 1008–1026. 10.1080/01443410.2022.2077915
    https://doi.org/10.1080/01443410.2022.2077915 [Google Scholar]
  18. Donovan, A. M., & Fyfe, E. R.
    (2022) Connecting manipulatives and symbols promotes mathematics learning. Concrete Connections. Educational Psychology. 10.1080/01443410.2022.2077915
    https://doi.org/10.1080/01443410.2022.2077915 [Google Scholar]
  19. Donovan, A. G., & Donovan, A. M.
    (2022) Catchment multiplication representations instructor images. Available athttps://osf.io/jn8ez/ (last access1 November 2023). 10.17605/OSF.IO/JN8EZ
    https://doi.org/10.17605/OSF.IO/JN8EZ
  20. Fennell, F., & Rowan, T.
    (2001) Representation: An important process for teaching and learning mathematics. Teaching Children Mathematics, 7(5), 288. 10.5951/TCM.7.5.0288
    https://doi.org/10.5951/TCM.7.5.0288 [Google Scholar]
  21. Flevares, L. M., & Perry, M.
    (2001) How many do you see? The use of nonspoken representations in first-grade mathematics lessons. Journal of Educational Psychology, 93(2), 330–345. 10.1037/0022‑0663.93.2.330
    https://doi.org/10.1037/0022-0663.93.2.330 [Google Scholar]
  22. Fyfe, E. R., & Nathan, M. J.
    (2019) Making “concreteness fading” more concrete as a theory of instruction for promoting transfer, Educational Review, 711, 403–422. 10.1080/00131911.2018.1424116
    https://doi.org/10.1080/00131911.2018.1424116 [Google Scholar]
  23. Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., Olivier, A., & Human, P.
    (1997) Making Sense: Teaching and Learning Mathematics with Understanding. Portsmouth, NH: Heinemann.
    [Google Scholar]
  24. Kendon, A.
    (1972) Some relationships between body motion and speech: An analysis of an example. InA. W. Siegman & B. Pope. (Eds.), Studies in Dyadic Communication (pp.177–210). Elmsford, NY: Pergamon. 10.1016/B978‑0‑08‑015867‑9.50013‑7
    https://doi.org/10.1016/B978-0-08-015867-9.50013-7 [Google Scholar]
  25. Mayer, R. E., Heiser, J., & Lonn, S.
    (2001) Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of Educational Psychology, 931, 187–198. 10.1037/0022‑0663.93.1.187
    https://doi.org/10.1037/0022-0663.93.1.187 [Google Scholar]
  26. McNeil, N. M., & Fyfe, E. R.
    (2012) “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 221, 440–448. 10.1016/j.learninstruc.2012.05.001
    https://doi.org/10.1016/j.learninstruc.2012.05.001 [Google Scholar]
  27. McNeill, D.
    (2000a) Catchments and contexts: Non-modular factors in speech and gesture production. InD. McNeill (Ed.), Language and Gesture (pp.312–328). Cambridge, UK: Cambridge University Press. 10.1017/CBO9780511620850.019
    https://doi.org/10.1017/CBO9780511620850.019 [Google Scholar]
  28. (2000b) Growth points, catchments, and contexts. Cognitive Studies, 7(1), 22–36.
    [Google Scholar]
  29. McNeill, D., Quek, F., McCullough, K. -E., Duncan, S., Furuyama, N., Bryll, R., Ma, X. -F., & Ansari, R.
    (2001) Catchments, prosody and discourse. Gesture, 1(1), 9–33. 10.1075/gest.1.1.03mcn
    https://doi.org/10.1075/gest.1.1.03mcn [Google Scholar]
  30. McNeill, D.
    (2002) Gesture and language dialectic. Acta Linguistica Hafniensia, 34(1), 7–37. 10.1080/03740463.2002.10414607
    https://doi.org/10.1080/03740463.2002.10414607 [Google Scholar]
  31. Mortimer, E. F., Pereira, R. R., & Moro, L.
    (2019) The use of recurrent gestures to give cohesion to classroom discourse. InL. Xu, G. Aranda, W. Widjaja, & D. Clarke. (Eds.), Video-based research in education: Cross-disciplinary perspectives (pp.176–193). Routledge.
    [Google Scholar]
  32. Nathan, M. J., & Alibali, M. W.
    (2011) How gesture use enables intersubjectivity in the classroom. InG. Stam & M. Ishino. (Eds.), Integrating gestures: The interdisciplinary nature of gesture (pp.257–266). Amsterdam: John Benjamins. 10.1075/gs.4.23nat
    https://doi.org/10.1075/gs.4.23nat [Google Scholar]
  33. Pozzer-Ardenghi, L., & Roth, W. -M.
    (2008) Catchments, growth points and the iterability of signs in classroom communication. Semiotica, 1721, 389–409. 10.1515/SEMI.2008.105
    https://doi.org/10.1515/SEMI.2008.105 [Google Scholar]
  34. Rau, M. A., & Matthews, P. G.
    (2017) How to make ‘more’ better? Principles for effective use of multiple representations to enhance students’ learning about fractions. ZDM, 491, 531–544. 10.1007/s11858‑017‑0846‑8
    https://doi.org/10.1007/s11858-017-0846-8 [Google Scholar]
  35. Richland, L. E., Zur, O., & Holyoak, K. J.
    (2007) Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 1128–1129. 10.1126/science.1142103
    https://doi.org/10.1126/science.1142103 [Google Scholar]
  36. Richland, L. E.
    (2015) Linking gestures: Cross-cultural variation during instructional analogies. Cognition and Instruction, 331, 295–321. 10.1080/07370008.2015.1091459
    https://doi.org/10.1080/07370008.2015.1091459 [Google Scholar]
  37. Serra, M. J., & Magreehan, D. A.
    (2016) Instructor fluency correlates with students’ ratings of their learning and their instructor in an actual course. Creative Education, 7(8). 10.4236/ce.2016.78120
    https://doi.org/10.4236/ce.2016.78120 [Google Scholar]
  38. Sidney, P. G., & Thompson, C. A.
    (2019) Implicit analogies in learning: Supporting transfer by warming up. Current Directions in Psychological Science, 28(6), 619–625. 10.1177/0963721419870801
    https://doi.org/10.1177/0963721419870801 [Google Scholar]
  39. Valenzeno, L., Alibali, M. W., & Klatzky, R. L.
    (2003) Teachers’ gestures facilitate students’ learning: A lesson in symmetry. Contemporary Educational Psychology, 281, 187–204. 10.1016/S0361‑476X(02)00007‑3
    https://doi.org/10.1016/S0361-476X(02)00007-3 [Google Scholar]
  40. Wakefield, E. M., Novack, M. A., Congdon, E. L., & Howard, L. H.
    (2021) Individual differences in gesture interpretation predict children’s propensity to pick a gesturer as a good informant. Journal of Experimental Child Psychology, 2051, 105069. 10.1016/j.jecp.2020.105069
    https://doi.org/10.1016/j.jecp.2020.105069 [Google Scholar]
  41. Williams, W. M., & Ceci, S. J.
    (1997) “How’m I doing?” Problems with student ratings of instructors and courses. Change: The Magazine of Higher Learning, 29(5), 12–23. 10.1080/00091389709602331
    https://doi.org/10.1080/00091389709602331 [Google Scholar]
  42. Wilson, A. A., Boatright, M. D., & Landon-Hays, M.
    (2014) Middle school teachers’ discipline-specific use of gestures and implications for disciplinary literacy instruction. Journal of Literacy Research, 46(2), 234–262. 10.1177/1086296X14532615
    https://doi.org/10.1177/1086296X14532615 [Google Scholar]
  43. Yeo, A., Ledesma, I., Nathan, M. J., Alibali, M. W., & Church, R. B.
    (2017) Teachers’ gestures and students’ learning: Sometimes “hands off” is better. Cognitive Research: Principles and Implications, 2, 41. 10.1186/s41235‑017‑0077‑0
    https://doi.org/10.1186/s41235-017-0077-0 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/gest.21021.don
Loading
/content/journals/10.1075/gest.21021.don
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): connections; gestural catchment; linking gesture; mathematics learning; representations
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error