image of Script-style degrees
Buy:$35.00 + Taxes



Previous work has shown that letters presented in special fonts with a high degree of script style have a poor recognition rate. We investigated whether there is a breaking point where this deficit sets in. In an experimental paradigm using a three-letter string partial report, 32 participants were presented with test stimuli of four new fonts with gradually increasing script style. The results of our investigation showed that each level of increasing script style resulted in significantly worse recognition. These findings demonstrate that for maximum letter recognition, the font style should be based on simple and familiar letter skeletons.


Article metrics loading...

Loading full text...

Full text loading...


  1. Beier, S.
    (2017) Type Tricks: Your personal guide to type design. BIS Publishers.
    [Google Scholar]
  2. Beier, S., Bernard, J. B., & Castet, E.
    (2018) Numeral legibility and visual complexity. DRS Design Research Society. 10.21606/drs.2018.246
    https://doi.org/10.21606/drs.2018.246 [Google Scholar]
  3. Beier, S., & Oderkerk, C. A.
    (2022) Closed letter counters impair recognition. Applied Ergonomics, , . 10.1016/j.apergo.2022.103709
    https://doi.org/10.1016/j.apergo.2022.103709 [Google Scholar]
  4. Beier, S., & Oderkerk, C. A. T.
    (2021) High letter stroke contrast impairs letter recognition of bold fonts. Applied Ergonomics, . 10.1016/j.apergo.2021.103499
    https://doi.org/10.1016/j.apergo.2021.103499 [Google Scholar]
  5. Beier, S., Sand, K., & Starrfelt, R.
    (2017) Legibility Implications of Embellished Display Typefaces. Visible Language, (), –.
    [Google Scholar]
  6. Bernard, J. B., & Chung, S. T.
    (2011) The dependence of crowding on flanker complexity and target–flanker similarity. Journal of Vision, (), –. 10.1167/11.8.1
    https://doi.org/10.1167/11.8.1 [Google Scholar]
  7. Brumberger, E. R.
    (2003) The rhetoric of typography: The persona of typeface and text. Technical Communication, (), –. 10.1109/47.7818
    https://doi.org/10.1109/47.7818 [Google Scholar]
  8. Celhay, F., Boysselle, J., & Cohen, J.
    (2015) Food packages and communication through typeface design: The exoticism of exotypes. Food Quality and Preference, , –. 10.1016/j.foodqual.2014.07.009
    https://doi.org/10.1016/j.foodqual.2014.07.009 [Google Scholar]
  9. Chanceaux, M., Mathôt, S., & Grainger, J.
    (2014) Effects of number, complexity, and familiarity of flankers on crowded letter identification. Journal of Vision, (), –. 10.1167/14.6.7
    https://doi.org/10.1167/14.6.7 [Google Scholar]
  10. Childers, T. L., & Jass, J.
    (2002) All Dressed Up With Something to Say: Effects of Typeface Semantic Associations on Brand Perceptions and Consumer Memory. Journal of Consumer Psychology, (), –. 10.1207/S15327663JCP1202_03
    https://doi.org/10.1207/S15327663JCP1202_03 [Google Scholar]
  11. Choi, S., Yamasaki, T., & Aizawa, K.
    (2016) Typeface Emotion Analysis for Communication on Mobile Messengers. Proceedings of the 1st International Workshop on Multimedia Alternate Realities – AltMM ’16, –. 10.1145/2983298.2983305
    https://doi.org/10.1145/2983298.2983305 [Google Scholar]
  12. Chu, X. Y. M., Tok, D., & Gui, J. J.
    (2021) Why Not Set Pen to Paper? How Typeface Design Influence Charitable Behaviors. ACR North American Advances.
    [Google Scholar]
  13. Dai, Y.
    (2021) Comparison of Emphasis Point Towards Marketing Strategies Between Pepsi & Coca-Cola:6th International Conference on Financial Innovation and Economic Development (ICFIED 2021), Sanya, China. 10.2991/aebmr.k.210319.015
    https://doi.org/10.2991/aebmr.k.210319.015 [Google Scholar]
  14. Dehaene, S.
    (2009) Reading in the brain: The science and evolution of a human invention. Viking New York.
    [Google Scholar]
  15. Doyle, J. R., & Bottomley, P. A.
    (2004) Font appropriateness and brand choice. Journal of Business Research, (), –. 10.1016/S0148‑2963(02)00487‑3
    https://doi.org/10.1016/S0148-2963(02)00487-3 [Google Scholar]
  16. Fiset, D., Blais, C., Ethier-Majcher, C., Arguin, M., Bub, D., & Gosselin, F.
    (2008) Features for identification of uppercase and lowercase letters. Psychological Science, (), –. 10.1111/j.1467‑9280.2008.02218.x
    https://doi.org/10.1111/j.1467-9280.2008.02218.x [Google Scholar]
  17. Grohmann, B., Giese, J. L., & Parkman, I. D.
    (2013) Using type font characteristics to communicate brand personality of new brands. Journal of Brand Management, (), –. 10.1057/bm.2012.23
    https://doi.org/10.1057/bm.2012.23 [Google Scholar]
  18. Hudson, J. [Google Scholar]
  19. Izadi, A., & Patrick, V. M.
    (2020) The power of the pen: Handwritten fonts promote haptic engagement. Psychology & Marketing, (), –. 10.1002/mar.21318
    https://doi.org/10.1002/mar.21318 [Google Scholar]
  20. Keage, H. A., Coussens, S., Kohler, M., Thiessen, M., & Churches, O. F.
    (2014) Investigating letter recognition in the brain by varying typeface: An event-related potential study. Brain and Cognition, , –. 10.1016/j.bandc.2014.05.001
    https://doi.org/10.1016/j.bandc.2014.05.001 [Google Scholar]
  21. Kesten, H.
    (1958) Accelerated stochastic approximation. The Annals of Mathematical Statistics, (), –. 10.1214/aoms/1177706705
    https://doi.org/10.1214/aoms/1177706705 [Google Scholar]
  22. Kim, M. J., & Lim, J. H.
    (2019) A comprehensive review on logo literature: Research topics, findings, and future directions. Journal of Marketing Management, (), –. 10.1080/0267257X.2019.1604563
    https://doi.org/10.1080/0267257X.2019.1604563 [Google Scholar]
  23. Kulahcioglu, T., & de Melo, G.
    (2018) Predicting Semantic Signatures of Fonts. 2018 IEEE 12th International Conference on Semantic Computing (ICSC), –. 10.1109/ICSC.2018.00025
    https://doi.org/10.1109/ICSC.2018.00025 [Google Scholar]
  24. Lanthier, S. N., Risko, E. F., Stolz, J. A., & Besner, D.
    (2009) Not all visual features are created equal: Early processing in letter and word recognition. Psychonomic Bulletin & Review, (), –. 10.3758/PBR.16.1.67
    https://doi.org/10.3758/PBR.16.1.67 [Google Scholar]
  25. Mathôt, S., Schreij, D., & Theeuwes, J.
    (2012) OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, (), –. 10.3758/s13428‑011‑0168‑7
    https://doi.org/10.3758/s13428-011-0168-7 [Google Scholar]
  26. Mirchandani, S., Zheng, L., & Gong, J.
    (2018) Typeface Semantic Attribute Prediction from Rasterized Font Representations. .
    [Google Scholar]
  27. Park, J., Velasco, C., & Spence, C.
    (2022) “Looking sharp”: Price typeface influences awareness of spending in mobile payment. Psychology & Marketing, (), –. 10.1002/mar.21651
    https://doi.org/10.1002/mar.21651 [Google Scholar]
  28. Pelli, D. G., Burns, C. W., Farell, B., & Moore-Page, D. C.
    (2006) Feature detection and letter identification. Vision Research, (), –. 10.1016/j.visres.2006.04.023
    https://doi.org/10.1016/j.visres.2006.04.023 [Google Scholar]
  29. Pelli, D. G., & Tillman, K. A.
    (2007) Parts, wholes, and context in reading: A triple dissociation. Plos One, (), . 10.1371/journal.pone.0000680
    https://doi.org/10.1371/journal.pone.0000680 [Google Scholar]
  30. Petit, J. P., & Grainger, J.
    (2002) Masked partial priming of letter perception. Visual Cognition, (), –. 10.1080/13506280042000207
    https://doi.org/10.1080/13506280042000207 [Google Scholar]
  31. Puškarević, I., Nedeljković, U., Dimovski, V., & Možina, K.
    (2016) An eye tracking study of attention to print advertisements: Effects of typeface figuration. Journal of Eye Movement Research, (). 10.16910/jemr.9.5.6
    https://doi.org/10.16910/jemr.9.5.6 [Google Scholar]
  32. Reichle, E. D.
    (2020) Computational models of reading: A handbook. Oxford University Press.
    [Google Scholar]
  33. Ren, X., Xia, L., & Du, J.
    (2018) Delivering warmth by hand: Customer responses to different formats of written communication. Journal of Services Marketing, (), –. 10.1108/JSM‑04‑2017‑0133
    https://doi.org/10.1108/JSM-04-2017-0133 [Google Scholar]
  34. Rosa, E., Perea, M., & Enneson, P.
    (2016) The role of letter features in visual-word recognition: Evidence from a delayed segment technique. Acta Psychologica, , –. 10.1016/j.actpsy.2016.05.016
    https://doi.org/10.1016/j.actpsy.2016.05.016 [Google Scholar]
  35. Schroll, R., Schnurr, B., & Grewal, D.
    (2018) Humanizing Products with Handwritten Typefaces. Journal of Consumer Research. 10.1093/jcr/ucy014
    https://doi.org/10.1093/jcr/ucy014 [Google Scholar]
  36. Thiessen, M., Beier, S., & Keage, H.
    (2020) A Review of the Cognitive Effects of Disfluent Typography on Functional Reading. The Design Journal, (), –. 10.1080/14606925.2020.1810434
    https://doi.org/10.1080/14606925.2020.1810434 [Google Scholar]
  37. Thiessen, M., Keage, H., Hwang, I., Astley, J., & Beier, S.
    (2022) Effect of typeface complexity on automatic whole word reading processes. Visible Language.
    [Google Scholar]
  38. Thiessen, M., Kohler, M., Churches, O., Coussens, S., & Keage, H.
    (2015) Brainy Type: A look at how the brain processes typographic information. Visible Language, (), .
    [Google Scholar]
  39. Tinker, M. A.
    (1963) Legibility of Print. Iowa State University Press.
    [Google Scholar]
  40. Treutwein, B.
    (1995) Adaptive psychophysical procedures. Vision Research, (), –. 10.1016/0042‑6989(95)00016‑X
    https://doi.org/10.1016/0042-6989(95)00016-X [Google Scholar]
  41. Wang, H., He, X., & Legge, G. E.
    (2014) Effect of pattern complexity on the visual span for Chinese and alphabet characters. Journal of Vision, (), –. 10.1167/14.8.6
    https://doi.org/10.1167/14.8.6 [Google Scholar]
  42. Wu, R., Han, X., & Kardes, F. R.
    (2021) Special fonts: The competing roles of difficulty and uniqueness in consumer inference. Psychology & Marketing, (), –. 10.1002/mar.21414
    https://doi.org/10.1002/mar.21414 [Google Scholar]
  43. Xiong, Y. Z., Lorsung, E. A., Mansfield, J. S., Bigelow, C., & Legge, G. E.
    (2018) Fonts Designed for Macular Degeneration: Impact on Reading. Investigative Ophthalmology & Visual Science, (), –. 10.1167/iovs.18‑24334
    https://doi.org/10.1167/iovs.18-24334 [Google Scholar]
  44. Žarko, J., & Nedeljković, U.
    (2020) The effect of controlling the weight variable on the typeface attribute assessment. Proceedings – The Tenth International Symposium GRID 2020, –. 10.24867/GRID‑2020‑p80
    https://doi.org/10.24867/GRID-2020-p80 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keywords: font style ; letter recognition ; legibility ; script ; typefaces
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error