1887
Volume 25, Issue 1
  • ISSN 0142-5471
  • E-ISSN: 1569-979X

Abstract

Abstract

For means of communication, persuasion is a natural and critical part of conveying a message. Data visualizations, being means of communication themselves, are used as rhetorical instruments, but how they persuade has yet to be fully understood. Based on George Campbell’s rhetorical theory, this paper presents the results of an empirical study testing the effectiveness of appeals to emotion through proximity techniques – the contextual framing of a visualization. The findings indicate that people feel greater interest towards a topic when the visualized data are more relevant to them, and that data representing events closer in time are more affecting.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/idj.25.1.06cam
2020-03-16
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/idj.25.1.06cam.html?itemId=/content/journals/10.1075/idj.25.1.06cam&mimeType=html&fmt=ahah

References

  1. Aristotle, Roberts, W. R., Bywater, I., & Solmsen, F.
    (1954) Rhetoric. New York: Modern Library.
    [Google Scholar]
  2. Bateman, S., Mandryk, R. L., Gutwin, C., Genest, A., McDine, D., & Brooks, C.
    (2010) Useful junk?: The effects of visual embellishment on comprehension and memorability of charts. InProceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.2573–2582). New York, NY, USA: ACM. doi:  10.1145/1753326.1753716
    https://doi.org/10.1145/1753326.1753716 [Google Scholar]
  3. Bateson, G.
    (1972) Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology. Chicago: University of Chicago Press.
    [Google Scholar]
  4. Booth, W. C.
    (1963) The rhetorical stance. College Composition and Communication, 14(3), 139–145. doi:  10.2307/355048
    https://doi.org/10.2307/355048 [Google Scholar]
  5. Borgo, R., Abdul-Rahman, A., Mohamed, F., Grant, P. W., Reppa, I., Floridi, L., & Chen, M.
    (2012) An empirical study on using visual embellishments in visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2759–2768. doi:  10.1109/TVCG.2012.197
    https://doi.org/10.1109/TVCG.2012.197 [Google Scholar]
  6. Borkin, M. A., Bylinskii, Z., Kim, N. W., Bainbridge, C. M., Yeh, C. S., Borkin, D., … Oliva, A.
    (2016) Beyond memorability: Visualization recognition and recall. IEEE Transactions on Visualization and Computer Graphics, 22(1), 519–528. doi:  10.1109/TVCG.2015.2467732
    https://doi.org/10.1109/TVCG.2015.2467732 [Google Scholar]
  7. Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H.
    (2013) What makes a visualization memorable?IEEE Transactions on Visualization and Computer Graphics, 19(12), 2306–2315. doi:  10.1109/TVCG.2013.234
    https://doi.org/10.1109/TVCG.2013.234 [Google Scholar]
  8. Boy, J., Pandey, A. V., Emerson, J., Satterthwaite, M., Nov, O., & Bertini, E.
    (2017) Showing people behind data: Does anthropomorphizing visualizations elicit more empathy for human rights data?InProceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp.5462–5474). New York, NY, USA: ACM. doi:  10.1145/3025453.3025512
    https://doi.org/10.1145/3025453.3025512 [Google Scholar]
  9. Buchanan, R.
    (1985) Declaration by design: Rhetoric, argument, and demonstration in design practice. Design Issues, 2(1), 4–22. doi:  10.2307/1511524
    https://doi.org/10.2307/1511524 [Google Scholar]
  10. Campbell, G.
    (1776) The philosophy of rhetoric. (vol.1). London: W. Strahan. Retrieved fromhdl.handle.net/2027/njp.32101061812242
    [Google Scholar]
  11. Dörk, M., Feng, P., Collins, C., & Carpendale, S.
    (2013) Critical InfoVis: Exploring the politics of visualization. InCHI ’13 Extended Abstracts on Human Factors in Computing Systems (pp.2189–2198). New York, NY, USA: ACM. doi:  10.1145/2468356.2468739
    https://doi.org/10.1145/2468356.2468739 [Google Scholar]
  12. Epstein, S.
    (1994) Integration of the cognitive and the psychodynamic unconscious. American Psychologist, 49(8), 709–724. doi:  10.1037/0003‑066X.49.8.709
    https://doi.org/10.1037/0003-066X.49.8.709 [Google Scholar]
  13. Funk, C., & Goo, S. K.
    (2015) A look at what the public knows and does not know about science (p. 40). Pew Research Center.
    [Google Scholar]
  14. Haushofer, K.
    (1928) Die suggestive Karte. InK. Haushofer, E. Obst, H. Lautensach, & O. Maull (Eds.), Bausteine zur Geopolitik (pp.343–348). Leipzig: Kurt Vowinckel Verlag.
    [Google Scholar]
  15. Harley, J. B.
    (1991) Can there be a cartographic ethics?Cartographic Perspectives, (10), 9–16. 10.14714/CP10.1053
    https://doi.org/10.14714/CP10.1053 [Google Scholar]
  16. Haroz, S., Kosara, R., & Franconeri, S. L.
    (2015) ISOTYPE visualization: Working memory, performance, and engagement with pictographs. InProceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp.1191–1200). New York, NY, USA: ACM. doi:  10.1145/2702123.2702275
    https://doi.org/10.1145/2702123.2702275 [Google Scholar]
  17. Hoeken, H.
    (2001) Anecdotal, statistical, and causal evidence: Their perceived and actual persuasiveness. Argumentation, 15(4), 425–437. doi:  10.1023/A:1012075630523
    https://doi.org/10.1023/A:1012075630523 [Google Scholar]
  18. Holmes, N.
    (1984) Designer’s guide to creating charts and diagrams (2nd ed.). New York: Watson-Guptill.
    [Google Scholar]
  19. Huff, D.
    (1954) How to lie with statistics. New York: Norton.
    [Google Scholar]
  20. Hullman, J., & Diakopoulos, N.
    (2011) Visualization rhetoric: framing effects in narrative visualization. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2231–2240. doi:  10.1109/TVCG.2011.255
    https://doi.org/10.1109/TVCG.2011.255 [Google Scholar]
  21. Johnson, B. T., & Eagly, A. H.
    (1989) Effects of involvement on persuasion: A meta-analysis. Psychological Bulletin, 106(2), 290–314. doi:  10.1037/0033‑2909.106.2.290
    https://doi.org/10.1037/0033-2909.106.2.290 [Google Scholar]
  22. Jones, G. E.
    (2011) How to lie with charts. LaPuerta Books and Media.
    [Google Scholar]
  23. Kogut, T., & Ritov, I.
    (2005) The singularity effect of identified victims in separate and joint evaluations. Organizational Behavior and Human Decision Processes, 97(2), 106–116. doi:  10.1016/j.obhdp.2005.02.003
    https://doi.org/10.1016/j.obhdp.2005.02.003 [Google Scholar]
  24. Kostelnick, C.
    (2016) The re-emergence of emotional appeals in interactive data visualization. Technical Communication, 63(2), 116–135.
    [Google Scholar]
  25. Lee, S., Kim, S.-H., & Kwon, B. C.
    (2017) VLAT: Development of a visualization literacy assessment test. IEEE Transactions on Visualization and Computer Graphics, 23(1), 551–560. doi:  10.1109/TVCG.2016.2598920
    https://doi.org/10.1109/TVCG.2016.2598920 [Google Scholar]
  26. Lee, S., Winterich, K. P., & Ross Jr., W. T.
    (2014) I’m moral, but I won’t help you: The distinct roles of empathy and justice in donations. Journal of Consumer Research, 41(3), 678–696. doi:  10.1086/677226
    https://doi.org/10.1086/677226 [Google Scholar]
  27. Lumley, T., Diehr, P., Emerson, S., & Chen, L.
    (2002) The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23(1), 151–169. doi:  10.1146/annurev.publhealth.23.100901.140546
    https://doi.org/10.1146/annurev.publhealth.23.100901.140546 [Google Scholar]
  28. Monmonier, M. S.
    (1996) How to lie with maps. Chicago: University of Chicago Press. 10.7208/chicago/9780226029009.001.0001
    https://doi.org/10.7208/chicago/9780226029009.001.0001 [Google Scholar]
  29. Muehlenhaus, I.
    (2010) Lost in visualization: Using quantitative content analysis to identify, measure, and categorize political cartographic manipulations (Ph.D.). University of Minnesota, United States, Minnesota. Retrieved fromhttps://search-proquest-com.ezproxy.neu.edu/docview/305207782/abstract/73A8DC04E3AD4FC2PQ/1
    [Google Scholar]
  30. (2012) If looks could kill: The impact of different rhetorical styles on persuasive geocommunication. The Cartographic Journal, 49, 361–375. doi:  10.1179/1743277412Y.0000000032
    https://doi.org/10.1179/1743277412Y.0000000032 [Google Scholar]
  31. (2013) The design and composition of persuasive maps. Cartography and Geographic Information Science, 40(5), 401–414. doi:  10.1080/15230406.2013.783450
    https://doi.org/10.1080/15230406.2013.783450 [Google Scholar]
  32. Offenhuber, D.
    (2010) Visual anecdote. Leonardo, 43(4), 367–374. 10.1162/LEON_a_00010
    https://doi.org/10.1162/LEON_a_00010 [Google Scholar]
  33. Pandey, A., Manivannan, A., Nov, O., Satterthwaite, M. L., & Bertini, E.
    (2014) The persuasive power of data visualization. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2211–2220. doi:  10.1109/TVCG.2014.2346419
    https://doi.org/10.1109/TVCG.2014.2346419 [Google Scholar]
  34. Pandey, A., Rall, K., Satterthwaite, M. L., Nov, O., & Bertini, E.
    (2015) How deceptive are deceptive visualizations? An empirical analysis of common distortion techniques. InProceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp.1469–1478). New York, NY, USA: ACM. doi:  10.1145/2702123.2702608
    https://doi.org/10.1145/2702123.2702608 [Google Scholar]
  35. Riche, N. H., Hurter, C., Diakopoulos, N., & Carpendale, S.
    (Eds.) (2018) Data-driven atorytelling. Boca Raton, Florida: A K Peters/CRC Press. 10.1201/9781315281575
    https://doi.org/10.1201/9781315281575 [Google Scholar]
  36. Scherer, K. R.
    (2001) Emotions, psychological structure of. InN. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp.4472–4477). Oxford: Pergamon. doi:  10.1016/B0‑08‑043076‑7/01711‑3
    https://doi.org/10.1016/B0-08-043076-7/01711-3 [Google Scholar]
  37. (2005) What are emotions? And how can they be measured?Social Science Information, 44(4), 695–729. doi:  10.1177/0539018405058216
    https://doi.org/10.1177/0539018405058216 [Google Scholar]
  38. Segel, E., & Heer, J.
    (2010) Narrative visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1139–1148. doi:  10.1109/TVCG.2010.179
    https://doi.org/10.1109/TVCG.2010.179 [Google Scholar]
  39. Shelter Animals Count. The National Database Project
    Shelter Animals Count. The National Database Project (2017) Retrieved fromhttps://www.shelteranimalscount.org
  40. Slovic, P.
    (2007) “If I look at the mass I will never act”: Psychic numbing and genocide. Judgment and Decision Making, 2(2), 79–95.
    [Google Scholar]
  41. Small, D. A., Loewenstein, G., & Slovic, P.
    (2007) Sympathy and callousness: The impact of deliberative thought on donations to identifiable and statistical victims. Organizational Behavior and Human Decision Processes, 102(2), 143–153. doi:  10.1016/j.obhdp.2006.01.005
    https://doi.org/10.1016/j.obhdp.2006.01.005 [Google Scholar]
  42. Tactical Technology Collective
    Tactical Technology Collective (2014) Visualising Information for Advocacy (2nd ed.). Retrieved fromvisualisingadvocacy.org
    [Google Scholar]
  43. Thudt, A., Perin, C., Willett, W., & Carpendale, S.
    (2017) Subjectivity in Personal storytelling with visualization. Information Design Journal, 23(1): 48–64. doi:  10.1075/idj.23.1.07thu
    https://doi.org/10.1075/idj.23.1.07thu [Google Scholar]
  44. Tufte, E. R.
    (1983) The visual display of quantitative information. Cheshire, CT: Graphics Press.
    [Google Scholar]
  45. Tyner, J. A.
    (1982) Persuasive cartography. Journal of Geography, 81, 140–144. doi:  10.1080/00221348208980868
    https://doi.org/10.1080/00221348208980868 [Google Scholar]
  46. Vande Moere, A., Tomitsch, M., Wimmer, C., Christoph, B., & Grechenig, T.
    (2012) evaluating the effect of style in information visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2739–2748. doi:  10.1109/TVCG.2012.221
    https://doi.org/10.1109/TVCG.2012.221 [Google Scholar]
  47. Västfjäll, D., Slovic, P., Mayorga, M., & Peters, E.
    (2014) Compassion fade: Affect and charity are greatest for a single child in need. PLoS ONE, 9(6). 10.1371/journal.pone.0100115
    https://doi.org/10.1371/journal.pone.0100115 [Google Scholar]
  48. Viegas, F. B., & Wattenberg, M.
    (2007) Artistic data visualization: Beyond visual analytics. Lecture Notes in Computer Science, (4564), 182–191. 10.1007/978‑3‑540‑73257‑0_21
    https://doi.org/10.1007/978-3-540-73257-0_21 [Google Scholar]
  49. Watzlawick, P., Bavelas, J. B., & Jackson, D. D.
    (1967) Pragmatics of human communication. W. W. Norton & Company.
    [Google Scholar]
  50. Wood, D.
    (1991) How maps work. Cartographica, 29(3/4), 66–74.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/idj.25.1.06cam
Loading
/content/journals/10.1075/idj.25.1.06cam
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data visualization , emotion , pathos and rhetoric
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error