1887
Volume 25, Issue 4
  • ISSN 1384-6655
  • E-ISSN: 1569-9811
USD
Buy:$35.00 + Taxes

Abstract

Abstract

In this paper, we investigate how deep learning techniques can be applied to discourse pragmatics. As a testcase we analyse heuristic textual practices, defined as linguistic implementations of decision routines in research processes in academic discourse. We develop a complex annotation scheme of pragmalinguistic categories on different levels of granularity and manually annotate a corpus of texts across various scientific disciplines. This is the basis for training recurrent neural networks to classify heuristic textual practices. Our experiments show that the annotation categories are robust enough to be recognised by our models which learn similarities of the sentence-surfaces represented as word embeddings. Our study aims at an iterative human-in-the-loop process in which manual-hermeneutic and algorithmic procedures mutually advance the insight process. It underlines the fact that the interaction between manual and automated methods opens up a promising field for further research, allowing interpretative analyses of complex pragmatic phenomena in large corpora.

Loading

Article metrics loading...

/content/journals/10.1075/ijcl.19097.bec
2020-11-11
2020-11-27
Loading full text...

Full text loading...

References

  1. Aijmer, K.
    (2015) Pragmatic markers. InK. Aijmer & C. Rühlemann (Eds.), Corpus Pragmatics: A Handbook (pp.195–218). Cambridge University Press. 10.1017/CBO9781139057493.011
    https://doi.org/10.1017/CBO9781139057493.011 [Google Scholar]
  2. Archer, D., & Culpeper, J.
    (2003) Sociopragmatic annotation: New directions and possibilities in historical corpus linguistics. InA. Wilson, P. Rayson & T. McEnery (Eds.), Corpus Linguistics by the Lune: A Festschrift for Geoffrey Leech (pp.37–58). Peter Lang.
    [Google Scholar]
  3. Archer, D., Culpeper, J., & Davies, M.
    (2008) Pragmatic annotation. InA. Lüdeling & M. Kytö (Eds.), Corpus Linguistics: An International Handbook (pp.613–641). De Gruyter.
    [Google Scholar]
  4. Balbaschewski, M.
    (2015) Das Bankhaus H. Aufhäuser 1870–1938: Netzwerkbildung und ihre Auswirkung auf die Verdrängungsbestrebungen und „Arisierung“ im Nationalsozialismus [The Bankhaus H. Aufhäuser 1870–1938: Networking and its Impact on Liquidation and “Aryanization” in National Socialism]. [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/4585
    [Google Scholar]
  5. Becker, M., Staniek, M., Nastase, V., Palmer, A., & Frank, A.
    (2017) Classifying semantic clause types: Modeling context and genre characteristics with recurrent neural networks and attention. InProceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM) (pp.230–240). 10.18653/v1/S17‑1027
    https://doi.org/10.18653/v1/S17-1027 [Google Scholar]
  6. (2019) Classifying semantic clause types with recurrent neural betworks: Analysis of attention, context and genre characteristics. TAL Journal (Traitement Automatique des Langues / Natural Language Processing), 59(2), 15–48.
    [Google Scholar]
  7. Bender, M., & Müller, M.
    (2020) Heuristische Textpraktiken. Eine kollaborative Annotationsstudie zum akademischen Diskurs [Heuristic Text Practices. A Collaborative Annotation Study on Academic Discourse]. Zeitschrift für Germanistische Linguistik (ZGL), 48(1), 1–46. 10.1515/zgl‑2020‑0001
    https://doi.org/10.1515/zgl-2020-0001 [Google Scholar]
  8. Benitez-Castro, M.-A., & Thompson, P.
    (2015) Shell-nounhood in academic discourse: A critical state-of-the-art review. International Journal of Corpus Linguistics, 20(3), 378–404. 10.1075/ijcl.20.3.05ben
    https://doi.org/10.1075/ijcl.20.3.05ben [Google Scholar]
  9. Bhatia, V. K.
    (2002) A generic view of academic discourse. InJ. Flowerdew (Ed.), Academic Discourse (pp.21–39). Routledge.
    [Google Scholar]
  10. Biber, D., & Gray, B.
    (2016) Grammatical Complexity in Academic English: Linguistic Change in Writing. Cambridge University Press. 10.1017/CBO9780511920776
    https://doi.org/10.1017/CBO9780511920776 [Google Scholar]
  11. Braun, S.
    (2016) Einflussfaktoren auf den Wechsel des Abschlussprüfers: Eine empirische Analyse bei kapitalmarktorientierten Unternehmen [Influential Factors on Discontinuing Audit Engagements: An Empiric Analysis of Capital-marketoriented Enterprises] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5377
    [Google Scholar]
  12. Bunton, D.
    (2002) Generic moves in Ph.D. thesis introductions. InJ. Flowerdew (Ed.), Academic Discourse (pp.57–75). Longman.
    [Google Scholar]
  13. Cohen, J.
    (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. 10.1177/001316446002000104
    https://doi.org/10.1177/001316446002000104 [Google Scholar]
  14. Cotos, E., Huffman, S., & Link, S.
    (2017) A move/step model for methods sections: Demonstrating rigour and credibility. English for Specific Purposes, 46, 90–106. 10.1016/j.esp.2017.01.001
    https://doi.org/10.1016/j.esp.2017.01.001 [Google Scholar]
  15. Didzoleit, H.
    (2016) Struktur und Magnetismus von Ferrocen und ferrocenhaltigen Polymeren in dünnen Filmen [Structure and magnetism of Ferrocene and Ferrocene-containing polymers in thin films] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5317
    [Google Scholar]
  16. Dieleman, O.
    (2016) Hinweise für die Entwicklung von Verfahren zur maßnahmenartübergreifenden Dringlichkeitsbewertung von Straßenbaumaßnahmen: Ein Beitrag zur Entscheidungsfindung im Rahmen der Aufstellung von Bauprogrammen für Straßenbaumaßnahmen [Information for the Development of Guiding Principles for Priority Appraisal Assessment Procedures: A Contribution to Decision-making in the Context of Drawing Up Construction Programs for Road Construction Measures] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5570
    [Google Scholar]
  17. Eggs, E.
    (2000) Vertextungsmuster Argumentation: Logische Grundlagen [Textualisation pattern argumentation: Logical foundations]. InK. Brinker, G. Antos, W. Heinemann, & S. F. Sager (Eds.), Text- und Gesprächslinguistik, Bd. 1 [Text and Conversation Linguistics, Volume 1] (pp.397–414). De Gruyter.
    [Google Scholar]
  18. Feilke, H.
    (2012) Was sind Textroutinen? Zur Theorie und Methodik des Forschungsfeldes [What are text routines? On the theory and methodology of the research field]. InFeilke, H. & Lehnen, K. (Eds.), Schreib- und Textroutinen: Theorie, Erwerb und didaktisch-mediale Modellierung [Writing and Text Routines: Theory, Acquisition and Didactic Media Modelling] (pp.1–31). Lang. 10.3726/978‑3‑653‑01844‑8
    https://doi.org/10.3726/978-3-653-01844-8 [Google Scholar]
  19. Gottschling, A.
    (2016) Modellierung und Simulation von Altpapiersortieranlagen [Modelling and Simulation of Recovered Paper in Industrial Sorting Plants] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5569
    [Google Scholar]
  20. Greve, W., & Wentura, D.
    (1997) Wissenschaftliche Beobachtung: Eine Einführung [Scientific Observation: An Introduction]. PVU/Beltz.
    [Google Scholar]
  21. Hedderich, M., & Klakow, D.
    (2018) Training a neural network in a low-resource setting on automatically annotated noisy data. InProceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP (pp.12–18). Association for Computational Linguistics. https://www.aclweb.org/anthology/W18-3402/. 10.18653/v1/W18‑3402
    https://doi.org/10.18653/v1/W18-3402 [Google Scholar]
  22. Henrici, N.
    (2016) Die Ansprüche und Rechte des mit der Objektüberwachung der Gebäudeerrichtung beauftragten Architekten und Ingenieurs bei Bauablaufstörungen [The Claims and Rights of the Architect and Engineer Comissioned with the Construction Supervision in Case of Construction Disturbance] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5446
    [Google Scholar]
  23. Hess, V.
    (2015) Psychobiologische Entspannungsreaktion bei abstinenten suchtkranken Patienten: Interindividuelle Differenzen in Abhängigkeit von stressbezogenen dispositionellen Verhaltensweisen und Persönlichkeitsmerkmalen [Psychobiological Relaxation Reaction in Abstinent Addicted Patients: Interindividual Differences Depending on Stress-related Dispositional Behavior and Personality Traits] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/4531
    [Google Scholar]
  24. Hey, S. P.
    (2016) Heuristics and meta-heuristics in scientific judgement. The British Journal for the Philosophy of Science, 76, 471–495. 10.1093/bjps/axu045
    https://doi.org/10.1093/bjps/axu045 [Google Scholar]
  25. Hufler, T.
    (2016) Automorphe Formen auf orthogonalen und unitären Gruppen [Automorphic Forms on Orthogonal and Unitary Groups] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5599
    [Google Scholar]
  26. Hyland, K.
    (1998) Persuasion and context: The pragmatics of academic metadiscourse. Journal of Pragmatics, 30(4), 437–455. 10.1016/S0378‑2166(98)00009‑5
    https://doi.org/10.1016/S0378-2166(98)00009-5 [Google Scholar]
  27. (2004) Disciplinary Discourses: Social Interactions in Academic Writing. The University of Michigan Press.
    [Google Scholar]
  28. (2006) Disciplinary differences: Language variations in academic discourses. InK. Hyland (Ed.), Academic Discourse across Disciplines (pp.17–48). Peter Lang. 10.3726/978‑3‑0351‑0446‑2
    https://doi.org/10.3726/978-3-0351-0446-2 [Google Scholar]
  29. (2009) Academic Discourse: English in a Global Context. Continuum.
    [Google Scholar]
  30. Hyland, K., & Jiang, F.
    (2018) Academic lexical bundles. How are they changing?International Journal of Corpus Linguistics, 23(4), 383–407. 10.1075/ijcl.17080.hyl
    https://doi.org/10.1075/ijcl.17080.hyl [Google Scholar]
  31. Johnson, R., & Zhang, T.
    (2015) Effective use of word order for text categorization with Convolutional Neural Networks. InProceedings of the Annual Conference of the North American Chapter of the ACL (NAACL) (pp.103–112). Association for Computational Linguistics. https://www.aclweb.org/anthology/N15-1011/
    [Google Scholar]
  32. Kanoksilapatham, B.
    (2005) Rhetorical structure of biochemistry research articles. English for Specific Purposes, 24, 269–292. 10.1016/j.esp.2004.08.003
    https://doi.org/10.1016/j.esp.2004.08.003 [Google Scholar]
  33. (2007) Rhetorical moves in biochemistry research articles. InBiber, D., Connor, U., & Upton, T. A. (Eds.), Discourse on the Move: Using Corpus Analysis to Describe Discourse Structure (pp.73–119). John Benjamins. 10.1075/scl.28.06kan
    https://doi.org/10.1075/scl.28.06kan [Google Scholar]
  34. Knorr-Cetina, K.
    (1999) Epistemic Cultures: How the Sciences Make Knowledge. Harvard University Press.
    [Google Scholar]
  35. Kommoß, B.
    (2016) Die Hydrierung von CO2 zu CH3OH unter überkritischen Bedingungen: Eine reaktionstechnische Untersuchung [The Catalytic Hydrogenation of CO2 to CH3OH under Supercritical Conditions: A Reaction Engineering Investigation] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5593
    [Google Scholar]
  36. Landis, J. R., & Koch, G. G.
    (1977) The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. 10.2307/2529310
    https://doi.org/10.2307/2529310 [Google Scholar]
  37. Lee, L., & Dernoncourt, F.
    (2016) Sequential short-text classification with Recurrent and Convolutional Neural Networks. InProceedings of the 2016 Conference of the North American Chapter of the ACL: Human Language Technologies (pp.515–520). Association for Computational Linguistics. https://www.aclweb.org/anthology/N16-1062/
    [Google Scholar]
  38. Liu, L., Mu, F., Li, P., Mu, X., Tang, J., Ai, X., Fu, R., Wang, L., & Zhou, X.
    (2019) NeuralClassifier: An open-source neural hierarchical multi-label text classification toolkit. InProceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations (pp.87–92). Association for Computational Linguistics. https://www.aclweb.org/anthology/P19-3015/. 10.18653/v1/P19‑3015
    https://doi.org/10.18653/v1/P19-3015 [Google Scholar]
  39. Liu, P., Shafiq, J., & Meng, H.
    (2015) Fine-grained opinion mining with Recurrent Neural Networks and Word Embeddings. InProceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp.1433–1443). Association for Computational Linguistics. https://www.aclweb.org/anthology/D15-1168/
    [Google Scholar]
  40. Madabushi, H. T., Lee, M., & Barnden, J.
    (2018) Integrating question classification and deep learning for improved answer selection. InProceedings of the International Conference on Computational Linguistics (COLING) (pp.3283–3294). Association for Computational Linguistics. https://www.aclweb.org/anthology/C18-1278/
    [Google Scholar]
  41. Meister, J.-C., Petris, M., Gius, E., Jacke, J., Horstmann, J., & Bruck, C.
    (2018) CATMA (Version v5.2) [Computer software]. https://catma.de/
    [Google Scholar]
  42. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J.
    (2013) Distributed representations of words and phrases and their compositionality. InAdvances in Neural Information Processing Systems (pp.3111–3119). Neural Information Processing Systems (NIPS). https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
    [Google Scholar]
  43. Ng, H. T., Lim, C. Y., & Foo, S. K.
    (1999) A case study on inter-annotator agreement for word sense disambiguation. InProceedings of the ACL SIGLEX Workshop: Standardizing Lexical Resources. Association for Computational Linguistics. https://www.aclweb.org/anthology/W99-0502/
    [Google Scholar]
  44. Nielsen, M.
    (2019) Neural Networks and Deep Learning. neuralnetworksanddeeplearning.com/
    [Google Scholar]
  45. Ravenscroft, J., Oellrich, A., Saha, S., & Liakata, M.
    (2016) Multi-label annotation in scientific articles – The Multi-label Cancer Risk Assessment Corpus. InProceedings of the International Conference on Language Resources and Evaluation (LREC) (pp.4115–4123). Association for Computational Linguistics. https://www.aclweb.org/anthology/L16-1650/
    [Google Scholar]
  46. Reimers, N., Eckle-Kohler, J., Schnober, C., Kim, J., & Gurevych, I.
    (2014) Germeval2014: Nested Named Entity Recognition with neural networks. InProceedings of the 12th Edition of the KONVENS Conference (pp.117–120). https://hildok.bsz-bw.de/frontdoor/index/index/year/2014/docId/285
    [Google Scholar]
  47. Santos, C. N., & Gatti, M.
    (2014) Deep Convolutional Neural Networks for sentiment analysis of short texts. InProceedings of the 25th International Conference on Computational Linguistics (COLING) (pp.69–78). Association for Computational Linguistics. https://www.aclweb.org/anthology/C14-1008/
    [Google Scholar]
  48. Steinert, K.
    (2017) Collaborative Web-Based Short Text Annotation with Online Label Suggestion [MA thesis, TU Darmstadt]. https://www.inf.uni-hamburg.de/en/inst/ab/lt/teaching/theses/completed-theses/2017-steinert-textanno.pdf
    [Google Scholar]
  49. Swales, J. M.
    (1990) Genre Analysis: English in Academic and Research Settings. Cambridge University Press.
    [Google Scholar]
  50. Teruel, M., Cardellino, C., Cardellino, F., Alonso Alemany, L., & Villata, S.
    (2018) Increasing argument annotation reproducibility by using inter-annotator agreement to improve guidelines. InProceedings of the 11th International Conference on Language Resources and Evaluation (LREC) (pp.4061–4064). Association for Computational Linguistics. https://www.aclweb.org/anthology/L18-1640/
    [Google Scholar]
  51. Thompson, P.
    (2016) Genre approaches to theses and dissertations. InK. Hyland & P. Shaw (Eds.), The Routledge Handbook of English for Academic Purposes (pp.379–391). Routledge.
    [Google Scholar]
  52. Wang, L., & Ling, W.
    (2016) Neural network-based abstract generation for opinions and arguments. InProceedings of the 2016 Conference of the North American Chapter of the ACL (NAACL): Human Language Technologies (pp.47–57). Association for Computational Linguistics. https://www.aclweb.org/anthology/N16-1007/
    [Google Scholar]
  53. Weisser, M.
    (2015) Speech act annotation. InK. Ajmer & C. Rühlemann (Eds.), Corpus Pragmatics: A Handbook (pp.84–116). Cambridge University Press. 10.1017/CBO9781139057493.005
    https://doi.org/10.1017/CBO9781139057493.005 [Google Scholar]
  54. (2018) How to Do Corpus Pragmatics on Pragmatically Annotated Data. John Benjamins. 10.1075/scl.84
    https://doi.org/10.1075/scl.84 [Google Scholar]
  55. Wenninger, H.
    (2016) Der Einfluss sozialer Online-Netzwerke auf ihre Mitglieder: Eine Analyse von Nutzungsarten und sozialen Mechanismen [The influence of Social Networking Sites on their Members: An Analysis of Usage Patterns and Social Mechanisms] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5531
    [Google Scholar]
  56. Wess, J.
    (2016) Untersuchungen zur Prozessierung von Intermediaten der DNA-Doppelstrangbruchreparatur in der Mitose nach Bestrahlung in der G2-Phase [Investigations on the Processing of Intermediates of DNA Double-Strand Break Repair in Mitosis after Irradiation in the G2-phase] [Doctoral dissertation, TU Darmstadt]. TU Prints. tuprints.ulb.tu-darmstadt.de/5575
    [Google Scholar]
  57. Wimsatt, W. C.
    (2007) Re-Engineering Philosophy for Limited Beeings. Piecewise Approximation to Reality. Harvard University Press.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/ijcl.19097.bec
Loading
/content/journals/10.1075/ijcl.19097.bec
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): academic discourse , annotation , deep learning , discourse pragmatics and textual practices
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error