1887
Volume 27, Issue 1
  • ISSN 1384-6655
  • E-ISSN: 1569-9811
USD
Buy:$35.00 + Taxes

Abstract

Abstract

By examining and comparing the linguistic patterns in a self-built corpus of Chinese-English translations produced by , the latest online machine translation app from the most popular social media platform (WeChat) in China, this study explores such questions as whether or not and to what extent simplification and normalization (hypothesized Translation Universals) exhibit themselves in these translations. The results show that, whereas simplification cannot be substantiated, the tendency of normalization to occur in the WeChat translations can be confirmed. The research finds that these results are caused by the operating mechanism of machine translation (MT) systems. Certain salient words tend to prime WeChat’s MT system to repetitively resort to typical language patterns, which leads to a significant overuse of lexical chunks. It is hoped that the present study can shed new light on the development of MT systems and encourage more corpus-based product-oriented research on MT.

Loading

Article metrics loading...

/content/journals/10.1075/ijcl.19127.luo
2022-02-14
2025-02-06
Loading full text...

Full text loading...

References

  1. Baker, M.
    (1993) Corpus linguistics and translation studies: Implications and applications. InM. Baker, G. Francis, & E. Tognini-Bonelli (Eds.), Text and Technology: In Honour of John Sinclair (pp. 233–250). John Benjamins. 10.1075/z.64.15bak
    https://doi.org/10.1075/z.64.15bak [Google Scholar]
  2. (1996) Corpus-based translation studies: The challenges that lie ahead. InH. Somers (Ed.), In Terminology, LSP and Translation: Studies in Language Engineering, in Honour of Juan C. Sager (pp. 175–186). John Benjamins. 10.1075/btl.18.17bak
    https://doi.org/10.1075/btl.18.17bak [Google Scholar]
  3. Bernardini, S., & Ferraresi, A.
    (2011) Practice, description and theory come together: Normalization or interference in Italian technical translation?Meta, 56(2), 226–246. 10.7202/1006174ar
    https://doi.org/10.7202/1006174ar [Google Scholar]
  4. Bernardini, S., Ferraresi, A., & Miličević, M.
    (2016) From EPIC to EPTIC: Exploring simplification in interpreting and translation from an intermodal perspective. Target, 28(1), 61–86. 10.1075/target.28.1.03ber
    https://doi.org/10.1075/target.28.1.03ber [Google Scholar]
  5. Blum-Kulka, S., & Levenston, E.
    (1983) Universals of lexical simplification. InC. Faerch & C. Gabriele (Eds.), Strategies in Inter-language Communication (pp. 119–139). Longman.
    [Google Scholar]
  6. Bo, B.
    (2002) English Grammar. Kai Ming Press.
    [Google Scholar]
  7. Cappelle, B., & Loock, R.
    (2017) Typological differences shining through: The case of phrasal verbs in translated English. InG. De Sutter, M. A. Lefer, & I. Delaere (Eds.), Empirical Translation Studies: New Theoretical and Methodological Traditions (pp. 235–264). Mouton de Gruyter. 10.1515/9783110459586‑009
    https://doi.org/10.1515/9783110459586-009 [Google Scholar]
  8. Chesterman, A.
    (2004) Beyond the particular. InA. Mauranen & P. Kujamäki (Eds), Translation Universals: Do They Exist? (pp. 33–50). John Benjamins. 10.1075/btl.48.04che
    https://doi.org/10.1075/btl.48.04che [Google Scholar]
  9. Cronin, M.
    (2013) Translation in the Digital Age. Routledge.
    [Google Scholar]
  10. Feng, Z.
    (2018) Parallel development of machine translation and artificial intelligence. Journal of Foreign Language, 41(6), 35–48.
    [Google Scholar]
  11. (2020) Rosetta Stone and machine translation. Foreign Language Research, 1, 1–17.
    [Google Scholar]
  12. (2021) Two-wheel driven natural language understanding. Frontiers in Corpus Studies, 1, 148–175.
    [Google Scholar]
  13. Grabowski, L.
    (2013) Interfacing corpus linguistics and computational stylistics: Translation universals in translational literary Polish. International Journal of Corpus Linguistics, 18(2), 254–280. 10.1075/ijcl.18.2.04gra
    https://doi.org/10.1075/ijcl.18.2.04gra [Google Scholar]
  14. Gupta, A.
    (2021) User-controlled content translation in social media. In26th International Conference on Intelligent User Interfaces – Companion (pp. 96–98). Association for Computing Machinery.   10.1145/3397482.3450714
    https://doi.org/10.1145/3397482.3450714 [Google Scholar]
  15. Halverson, S.
    (2003) The cognitive basis of Translation Universals. Target, 15(2), 197–241. 10.1075/target.15.2.02hal
    https://doi.org/10.1075/target.15.2.02hal [Google Scholar]
  16. Hoey, M.
    (2005) Lexical Priming: A New Theory of Words and Language. Routledge.
    [Google Scholar]
  17. Holmes, J.
    (1988) Translated!: Papers on Literary Translation and Translation Studies. Rodopi. 10.1163/9789004486669
    https://doi.org/10.1163/9789004486669 [Google Scholar]
  18. Hu, K.
    (2016) Introducing Corpus-Based Translation Studies. Springer; Shanghai Jiao Tong University Press. 10.1007/978‑3‑662‑48218‑6
    https://doi.org/10.1007/978-3-662-48218-6 [Google Scholar]
  19. Hu, K., & Li, Y.
    (2016) Features of machine translation and its relations with human translation. Chinese Translators Journal, 5, 6–14.
    [Google Scholar]
  20. Hu, X., & Zeng, J.
    (2011) 从“把”字句看翻译汉语的杂合特征 [Hybridization of translated Chinese as observed in the use of “ba” constructions]. Foreign Language Research, 130, 69–75.
    [Google Scholar]
  21. Joos, M.
    (1967) The Five Clocks. Harcourt, Brace & World.
    [Google Scholar]
  22. Kajzer-Wietrzny, M.
    (2015) Simplification in interpreting and translation. Across Languages and Cultures, 16(2), 233–255. 10.1556/084.2015.16.2.5
    https://doi.org/10.1556/084.2015.16.2.5 [Google Scholar]
  23. Kenny, D.
    (2001) Lexis And Creativity In Translation: A Corpus-Based Study. St. Jerome.
    [Google Scholar]
  24. Kruger, H., & Rooy, B.
    (2012) Register and the features of translated language. Across Languages and Cultures, 13(1), 33–65. 10.1556/Acr.13.2012.1.3
    https://doi.org/10.1556/Acr.13.2012.1.3 [Google Scholar]
  25. Lapshinova-Koltunski, E.
    (2015) Variation in translation: Evidence from corpora. InC. Fantinuoli & F. Zanetti (Eds.), New Directions in Corpus-Based Translation Studies (pp. 93–114). Language Science Press.
    [Google Scholar]
  26. Laviosa, S.
    (1998) Core patterns of lexical use in a comparable corpus of English narrative prose. Meta, 43(4), 557–570. 10.7202/003425ar
    https://doi.org/10.7202/003425ar [Google Scholar]
  27. (2002) Corpus-based Translation Studies: Theory, Findings, Applications. Rodopi. 10.1163/9789004485907
    https://doi.org/10.1163/9789004485907 [Google Scholar]
  28. (2006) Data-driven learning for translating anglicisms in business communication. IEEE Transactions on Professional Communication, 49(3), 267–274. 10.1109/TPC.2006.880739
    https://doi.org/10.1109/TPC.2006.880739 [Google Scholar]
  29. (2010) Corpus-based translation studies 15 years on: Theory, findings, applications. Synaps, 24(2010), 3–12.
    [Google Scholar]
  30. (2011) Corpus-based translation studies: Where does it come from? Where is it going?InA. Kruger, K. Wallmach, & J. Munday (Eds.), Corpus-based Translation Studies: Research and Applications (pp. 13–32). Continuum.
    [Google Scholar]
  31. Lian, S.
    (2010) 英汉对比研究 [Contrastive Studies of English and Chinese]. Higher Education Press.
    [Google Scholar]
  32. Liu, F.
    (2019, Oct.24). 微信牵手网易有道 [WeChat and Youdao in Cooperation]. ZOL Soft. soft.zol.com.cn/489/4891071.html
    [Google Scholar]
  33. Mao, L.
    (2014) 微信与微语言生活 [WeChat and WeChat language]. Social Science Front, 12, 136–141.
    [Google Scholar]
  34. Page, R.
    (2012) Stories and Social Media: Identities and Interaction. Routledge.
    [Google Scholar]
  35. Rayson, P.
    (2008) From key words to key semantic domains. International Journal of Corpus Linguistics, 13(4), 519–549. 10.1075/ijcl.13.4.06ray
    https://doi.org/10.1075/ijcl.13.4.06ray [Google Scholar]
  36. Sánchez-Moya, A., & Cruz-Moya, O.
    (2015) “Hey there! I am using WhatsApp”: A preliminary study of recurrent discursive realisations in a corpus of WhatsApp statuses. Procedia: Social and Behavioral Sciences, 212(C), 52–60. 10.1016/j.sbspro.2015.11.298
    https://doi.org/10.1016/j.sbspro.2015.11.298 [Google Scholar]
  37. Schwartz, L.
    (2018) The history and promise of machine translation. InI. Lacruz & R. Jääskeläinen (Eds.), Innovation and Expansion in Translation Process Research (pp. 168–198). John Benjamins. 10.1075/ata.18.08sch
    https://doi.org/10.1075/ata.18.08sch [Google Scholar]
  38. Scott, M.
    (2012) WordSmith Tools (Version 6.0) [Computer software]. Lexical Analysis Software. https://lexically.net/wordsmith/downloads/
    [Google Scholar]
  39. Stubbs, M.
    (1996) Text and Corpus Analysis: Computer-assisted Studies of Language and Culture. Blackwell.
    [Google Scholar]
  40. Szymor, N.
    (2018) Translation: Universals or cognition?Target: International Journal of Translation Studies, 30(1), 53–86. 10.1075/target.15155.szy
    https://doi.org/10.1075/target.15155.szy [Google Scholar]
  41. Tagliamonte, S., & Denis, D.
    (2008) Linguistic ruin? LOL! Instant messaging and teen language. American Speech, 83(1), 3–34. 10.1215/00031283‑2008‑001
    https://doi.org/10.1215/00031283-2008-001 [Google Scholar]
  42. Teich, E.
    (2003) Cross-Linguistic Variation in System and Text: A Methodology for the Investigation of Translations and Comparable Texts. Mouton de Gruyter. 10.1515/9783110896541
    https://doi.org/10.1515/9783110896541 [Google Scholar]
  43. Tirkkonen-Condit, S.
    (2002) Translationese: A myth or an empirical fact? A study into the linguistic identifiability of translated language. Target, 14(2), 207–220. 10.1075/target.14.2.02tir
    https://doi.org/10.1075/target.14.2.02tir [Google Scholar]
  44. Toury, G.
    (2004) Probabilistic explanations in translation studies: Welcome as they are, would they qualify as universals?InA. Mauranen & P. Kujamäki (Eds), Translation Universals: Do they Exist? (pp. 15–32). John Benjamins. 10.1075/btl.48.03tou
    https://doi.org/10.1075/btl.48.03tou [Google Scholar]
  45. (2012) Descriptive Translation Studies and Beyond (2nd ed.). John Benjamins. 10.1075/btl.100
    https://doi.org/10.1075/btl.100 [Google Scholar]
  46. Vanderauwera, R.
    (1985) Dutch Novels Translated into English. Rodopi. 10.1163/9789004490284
    https://doi.org/10.1163/9789004490284 [Google Scholar]
  47. Van Oost, A., Willems, A., & De Sutter, G.
    (2016) Asymmetric syntactic patterns in German-Dutch translation: A corpus-based study of the interaction between normalisation and shining through. International Journal of Translation, 10, 1–18.
    [Google Scholar]
  48. Vanmassenhove, E., Shterionov, D., & Way, A.
    (2019) Lost in translation: Loss and decay of linguistic richness in machine translation. InM. Forcada, A. Way, B. Haddow, & Sennrich (Eds.), Proceedings of Machine Translation Summit XVII: Research Track (pp. 222–232). European Association for Machine Translation. https://aclanthology.org/W19-6622
    [Google Scholar]
  49. Wang, X., & Li, X.
    (2016) A corpus-based study of normalization in Chinese translations of Shakespeare’s plays. Journal of Foreign Languages, 39(3), 106–112.
    [Google Scholar]
  50. Wang, B., Shan, D., Fan, A., Liu, L., & Guo, J.
    (2022) A sentiment classification method of web social media based on multidimensional and multilevel modelling. IEEE Transactions on Industrial Informatics, 18(2), 1240–1249. 10.1109/TII.2021.3085663
    https://doi.org/10.1109/TII.2021.3085663 [Google Scholar]
  51. Williams, D.
    (2005) Recurrent Features of Translation in Canada: A Corpus-based Study. University of Ottawa.
    [Google Scholar]
  52. Zhang, M., & Toral, A.
    (2019) The effect of Translationese in machine translation test sets. InO. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, A. Martins, C. Monz, M. Negri, A. Névéol, M. Neves, M. Post, M. Turchi, & K. Verspoor (Eds.), Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers) (pp. 73–81). Association for Computational Linguistics. https://aclanthology.org/W19-5208/. 10.18653/v1/W19‑5208
    https://doi.org/10.18653/v1/W19-5208 [Google Scholar]
/content/journals/10.1075/ijcl.19127.luo
Loading
/content/journals/10.1075/ijcl.19127.luo
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error