Volume 27, Issue 3
  • ISSN 1384-6655
  • E-ISSN: 1569-9811
Buy:$35.00 + Taxes



In word association tasks, participants respond with the first word that comes to mind on seeing a given cue. These responses are generally assumed to be influenced by a number of factors, including cue semantics, form, and textual distribution. Previous studies exploring the third of these influences have used pairwise association measures, such as mutual information, to evaluate the extent to which textual distributions influence response selection. In the current paper, a different approach is taken. Rather than examining co-occurrences between a cue and its observed responses, this paper explores the possibility that the cue’s holistic collocational environment shapes its associative profile. Regression modelling demonstrates that the predictability of this textual distribution is a significant predictor of variance in the cue’s response profile. Overall, however, the amount of variance explained is small. A subsequent qualitative examination of distributional and associative profiles suggests several semantically based constraints to response generation.


Article metrics loading...

Loading full text...

Full text loading...


  1. Baayen, R. H.
    (2010) Demythologizing the word frequency effect: A discriminative learning perspective. The Mental Lexicon, 5(3), 436–461. 10.1075/ml.5.3.10baa
    https://doi.org/10.1075/ml.5.3.10baa [Google Scholar]
  2. Baayen, R. H., Milin, P., & Đurđević, D.
    (2011) An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118, 428–481. 10.1037/a0023851
    https://doi.org/10.1037/a0023851 [Google Scholar]
  3. Baayen, R. H., & Moscoso Del Prado Martín, F.
    (2003) Semantic density and past-tense formation in three Germanic languages. Language, 81(3), 666–698. 10.1353/lan.2005.0112
    https://doi.org/10.1353/lan.2005.0112 [Google Scholar]
  4. Bøyum, M.
    (2016) A New Word Association Test for Norwegian. University of Oslo.
    [Google Scholar]
  5. Brysbaert, M., Warriner, A. B., & Kuperman, V.
    (2014) Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904–911. 10.3758/s13428‑013‑0403‑5
    https://doi.org/10.3758/s13428-013-0403-5 [Google Scholar]
  6. Charles, W. G., & Miller, G. A.
    (1989) Contexts of antonymous adjectives. Applied Psycholinguistics, 10(03), 357–375. 10.1017/S0142716400008675
    https://doi.org/10.1017/S0142716400008675 [Google Scholar]
  7. Cramer, P.
    (1968) Word Association. Academic Press.
    [Google Scholar]
  8. Dagenbach, D., Horst, S., & Carr, T. H.
    (1990) Adding new information to semantic memory: How much learning is enough to produce automatic priming?Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 581–591.
    [Google Scholar]
  9. Davies, M.
    (2018) The iWeb Corpus. RetrievedFebruary 2, 2021fromhttps://www.english-corpora.org/iWeb/
    [Google Scholar]
  10. De Deyne, S., & Storms, G.
    (2008) Word associations: Network and semantic properties. Behavior Research Methods, 40(1), 213–231. 10.3758/BRM.40.1.213
    https://doi.org/10.3758/BRM.40.1.213 [Google Scholar]
  11. de Groot, A. M. B.
    (1989) Representational aspects of word imageability and word frequency as assessed through word association. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 824–845. 10.1037/0278‑7393.15.5.824
    https://doi.org/10.1037/0278-7393.15.5.824 [Google Scholar]
  12. Deese, J.
    (1966) The Structure of Associations in Language and Thought. Johns Hopkins Univeristy Press.
    [Google Scholar]
  13. Divjak, D., & Gries, S. Th.
    (2006) Ways of trying in Russian: Clustering behavioral profiles. Corpus Linguistics and Linguistic Theory, 2(1), 23–60. 10.1515/CLLT.2006.002
    https://doi.org/10.1515/CLLT.2006.002 [Google Scholar]
  14. Duñabeitia, J. A., Avilés, A., & Carreiras, M.
    (2008) NoA’s ark: Influence of the number of associates in visual word recognition. Psychonomic Bulletin & Review, 15(6), 1072–1077. 10.3758/PBR.15.6.1072
    https://doi.org/10.3758/PBR.15.6.1072 [Google Scholar]
  15. Entwisle, D. R.
    (1966) Form class and children’s word associations. Journal of Verbal Learning and Verbal Behaviour, 5, 558–565. 10.1016/S0022‑5371(66)80091‑9
    https://doi.org/10.1016/S0022-5371(66)80091-9 [Google Scholar]
  16. Fitzpatrick, T., & Izura, C.
    (2011) Word Association in L1 and L2: An exploratory study of response types, response times, and interlingual mediation. Studies in Second Language Acquisition, 33(3), 373–398. 10.1017/S0272263111000027
    https://doi.org/10.1017/S0272263111000027 [Google Scholar]
  17. Gries, S. Th.
    (2006) Corpus-based methods and cognitive semantics: The many senses of to run. InS. Th. Gries & A. Stefanowitsch (Eds.), Corpora in Cognitive Linguistics: Corpus-based Approaches to Syntax and Lexis (pp.57–99). Mouton de Gruyter. 10.1515/9783110197709.57
    https://doi.org/10.1515/9783110197709.57 [Google Scholar]
  18. (2010) Useful statistics for corpus linguistics. InAquilino Sánchez & M. Almela (Eds.), A Mosaic of Corpus Linguistics: Aelected Approaches (pp.269–291). Peter Lang.
    [Google Scholar]
  19. (2013) 50-something years of work on collocations: What is or should be next. International Journal of Corpus Linguistics, 18(1), 137–166. 10.1075/ijcl.18.1.09gri
    https://doi.org/10.1075/ijcl.18.1.09gri [Google Scholar]
  20. (2018) The discriminatory power of lexical context for alternations: An information-theoretic exploration. Journal of Research Design and Statistics in Linguistics and Communication Science, 5(1–2), 78–106. 10.1558/jrds.38227
    https://doi.org/10.1558/jrds.38227 [Google Scholar]
  21. Gries, S. Th., & Divjak, D.
    (2009) Behavioral profiles: A corpus-based approach to cognitive semantic analysis. InV. Evans & S. Pourcel (Eds.), New Directions in Cognitive Linguistics (pp.57–76). John Benjamins. 10.1075/hcp.24.07gri
    https://doi.org/10.1075/hcp.24.07gri [Google Scholar]
  22. Gries, S. Th., & Ellis, N. C.
    (2015) Statistical measures for usage-based linguistics. Language Learning, 65(S1), 228–255. 10.1111/lang.12119
    https://doi.org/10.1111/lang.12119 [Google Scholar]
  23. Guida, A., & Lenci, A.
    (2007) Semantic properties of word associations to Italian verbs. Italian Journal of Linguistics, 19(2007), 293–326.
    [Google Scholar]
  24. Hahn, L. W., & Sivley, R. M.
    (2011) Entropy, semantic relatedness and proximity. Behavior Research Methods, 43(3), 746–760. 10.3758/s13428‑011‑0087‑7
    https://doi.org/10.3758/s13428-011-0087-7 [Google Scholar]
  25. Hosmer, D. W., & Lemeshow, S.
    (2000) Applied Logistic Regression (2nd ed.). Wiley. 10.1002/0471722146
    https://doi.org/10.1002/0471722146 [Google Scholar]
  26. Hutchison, K. A.
    (2003) Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10(4), 785–813. 10.3758/BF03196544
    https://doi.org/10.3758/BF03196544 [Google Scholar]
  27. Janda, L. A., & Solovyev, V. D.
    (2009) What constructional profiles reveal about synonymy: A case study of Russian words for sadness and happiness. Cognitive Linguistics, 20(2), 367–393. 10.1515/COGL.2009.018
    https://doi.org/10.1515/COGL.2009.018 [Google Scholar]
  28. Kang, B.
    (2018) Collocation and word association: Comparing collocation measuring methods. International Journal of Corpus Linguistics, 23(1), 85–113. 10.1075/ijcl.15116.kan
    https://doi.org/10.1075/ijcl.15116.kan [Google Scholar]
  29. Kim, H.-Y.
    (2013) Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 38(1), 52. 10.5395/rde.2013.38.1.52
    https://doi.org/10.5395/rde.2013.38.1.52 [Google Scholar]
  30. Kiss, G. R., Armstrong, C., Milroy, R., & Piper, J.
    (1973) An associative thesaurus of English and its computer analysis. InA. J. Aitkin, R. W. Bailey, & N. Hamilton-Smith (Eds.), The Computer and Literary Studies (pp.153–165). Edinburgh University Press.
    [Google Scholar]
  31. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M.
    (2012) Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978–990. 10.3758/s13428‑012‑0210‑4
    https://doi.org/10.3758/s13428-012-0210-4 [Google Scholar]
  32. Levy, O., Goldberg, Y., & Dagan, I.
    (2015) Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics, 3, 211–225. 10.1162/tacl_a_00134
    https://doi.org/10.1162/tacl_a_00134 [Google Scholar]
  33. Longman
    Longman (2014) Longman Dictionary of Contemporary English (6th ed.).
    [Google Scholar]
  34. Mandera, P., Keuleers, E., & Brysbaert, M.
    (2017) Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92, 57–78. 10.1016/j.jml.2016.04.001
    https://doi.org/10.1016/j.jml.2016.04.001 [Google Scholar]
  35. McDonald, S. A., & Shillcock, R. C.
    (2001) Rethinking the word frequency effect: The neglected role of distributional information in lexical processing. Language and Speech, 44(3), 295–323. 10.1177/00238309010440030101
    https://doi.org/10.1177/00238309010440030101 [Google Scholar]
  36. McGee, I.
    (2009) Adjective-noun collocations in elicited and corpus data: Similarities, differences, and the whys and wherefores. Corpus Linguistics and Linguistic Theory, 5(1), 79–103. 10.1515/CLLT.2009.004
    https://doi.org/10.1515/CLLT.2009.004 [Google Scholar]
  37. McRae, K., Khalkhali, S., & Hare, M.
    (2012) Semantic and associative relations in adolescents and young adults: Examining a tenuous dichotomy. InV. F. Reyna, S. B. Chapman, M. R. Dougherty, & J. Confrey (Eds.), The Adolescent Brain: Learning, Reasoning, and Decision Making (pp.39–66). American Psychological Association. 10.1037/13493‑002
    https://doi.org/10.1037/13493-002 [Google Scholar]
  38. Michelbacher, L., Evert, S., & Schütze, H.
    (2011) Asymmetry in corpus-derived and human word associations. Corpus Linguistics and Linguistic Theory, 7(2), 245–276. 10.1515/cllt.2011.012
    https://doi.org/10.1515/cllt.2011.012 [Google Scholar]
  39. Mikolov, T., Chen, K., Corrado, G., & Dean, J.
    (2013) Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 1–9.
    [Google Scholar]
  40. Moscoso Del Prado Martín, F., Kostić, A., & Baayen, R. H.
    (2004) Putting the bits together: An information theoretical perspective on morphological processing. Cognition, 94(1), 1–18. 10.1016/j.cognition.2003.10.015
    https://doi.org/10.1016/j.cognition.2003.10.015 [Google Scholar]
  41. Nissen, H. B., & Henriksen, B.
    (2006) Word class influence on word association test results. International Journal of Applied Linguistics, 16(3), 389–408. 10.1111/j.1473‑4192.2006.00124.x
    https://doi.org/10.1111/j.1473-4192.2006.00124.x [Google Scholar]
  42. Pecher, D., & Raaijmakers, J. G. W.
    (1999) Automatic priming effects for new associations in lexical decision and perceptual indetification. The Quarterly Journal of Experimental Psychology Section A, 52(3), 593–614. 10.1080/713755837
    https://doi.org/10.1080/713755837 [Google Scholar]
  43. Prior, A., & Bentin, S.
    (2003) Incidental formation of episodic associations: The importance of sentential context. Memory & Cognition, 31(2), 306–316. 10.3758/BF03194389
    https://doi.org/10.3758/BF03194389 [Google Scholar]
  44. (2008) Word associations are formed incidentally during sentential semantic integration. Acta Psychologica, 127(1), 57–71. 10.1016/j.actpsy.2007.01.002
    https://doi.org/10.1016/j.actpsy.2007.01.002 [Google Scholar]
  45. Schrijnemakers, J. M. C., & Raaijmakers, J. G. W.
    (1997) Adding new word associations to semantic memory: Evidence for two interactive learning components. Acta Psychologica, 96(1–2), 103–132. 10.1016/S0001‑6918(96)00046‑7
    https://doi.org/10.1016/S0001-6918(96)00046-7 [Google Scholar]
  46. Scott, M.
    (2020) WordSmith Tools (Version 8.0) [Computer software]. Lexical Analysis Software. https://lexically.net/wordsmith/downloads/
    [Google Scholar]
  47. Sinclair, J.
    (1991) Corpus, Concordance, Collocation. Oxford University Press.
    [Google Scholar]
  48. Thwaites, P.
    (2019) Lexical and Distributional Influences on Word Association Response Generation [Doctoral dissertation, Cardiff University]. ORCA Online Research @ Cardiff. https://orca.cardiff.ac.uk/119182/
    [Google Scholar]
  49. (2020) Does verb transitivity influence word association responses?The Mental Lexicon15(3), 464–484. 10.1075/ml.20019.thw
    https://doi.org/10.1075/ml.20019.thw [Google Scholar]
  50. van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M.
    (2014) SUBTLEX-UK: A new and improved word frequency database for British English. Quarterly Journal of Experimental Psychology (2006), 67(January 2015), 1176–1190. 10.1080/17470218.2013.850521
    https://doi.org/10.1080/17470218.2013.850521 [Google Scholar]
  51. Vivas, L., Manoiloff, L., García, A. M., Lizarralde, F., & Vivas, J.
    (2019) Core semantic links or lexical associations: Assessing the nature of responses in word association tasks. Journal of Psycholinguistic Research, 48(1), 243–256. 10.1007/s10936‑018‑9601‑8
    https://doi.org/10.1007/s10936-018-9601-8 [Google Scholar]
  52. Wettler, M., Rapp, R., & Sedlmeier, P.
    (2005) Free word associations correspond to contiguities between words in texts. Journal of Quantitative Linguistics, 12(2–3), 111–122. 10.1080/09296170500172403
    https://doi.org/10.1080/09296170500172403 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): collocation; entropy; lexical context; profiles; word association
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error