1887
image of Reuse of social media data in corpus linguistics
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The use of very large social media datasets in corpus linguistics has obvious benefits. Such data represent a novel source of evidence when compared with structured digital text corpora. However, there is a clear need to assess critically how the effective reuse of data can be handled, how findings can be reproduced, and how results can be generalized. A relevant question concerns the presentation of data to ensure reproducibility and replicability. This article surveys the state-of-the-art of descriptions of data collection and methodological transparency in 30 studies that used Twitter/X as their data. The empirical section investigates how easy it would be to reproduce a study based on these descriptions. While we concentrate on evidence from one social media application, the discussion continues to a presentation of concrete steps that might be used to improve data management related to the reuse, discovery, and evaluation of social media data in general.

Loading

Article metrics loading...

/content/journals/10.1075/ijcl.24136.lai
2025-06-12
2025-07-19
Loading full text...

Full text loading...

References

  1. Abitbol, J. L., Karsai, M., Magué, J.-P., Chevrot, J.-P., & Fleury, E.
    (2018) Socioeconomic dependencies of linguistic patterns in Twitter: A multivariate analysis use. InP.-A. Champin, F. Gandon, M. Lalmas, & P. G. Ipeirotis (Eds.), Proceedings of the 2018 World Wide Web Conference (pp.–). ACM Press. 10.1145/3178876.3186011
    https://doi.org/10.1145/3178876.3186011 [Google Scholar]
  2. Altahmazi, T. H.
    (2020) Collective pragmatic acting in networked spaces: The case of #activism in Arabic and English Twitter discourse. Lingua, , Article e102837. 10.1016/j.lingua.2020.102837
    https://doi.org/10.1016/j.lingua.2020.102837 [Google Scholar]
  3. An, J., & Weber, I.
    (2016) #greysanatomy vs. #yankees: Demographics and hashtag use on Twitter. InK. P. Gummadi & M. Strohmaier (Eds.), Proceedings of the tenth international AAAI conference on web and social media (ICWSM 2016) (pp.–). 10.1609/icwsm.v10i1.14767
    https://doi.org/10.1609/icwsm.v10i1.14767 [Google Scholar]
  4. Biber, D.
    (1993) Representativeness in corpus design. Literary and Linguistic Computing, (), –. 10.1093/llc/8.4.243
    https://doi.org/10.1093/llc/8.4.243 [Google Scholar]
  5. Biber, D., Conrad, S., & Reppen, R.
    (1998) Corpus linguistics: Investigating language structure and use. Cambridge University Press. 10.1017/CBO9780511804489
    https://doi.org/10.1017/CBO9780511804489 [Google Scholar]
  6. Biber, D., & Reppen, R.
    (2015) The Cambridge handbook of English corpus linguistics. Cambridge University Press. 10.1017/CBO9781139764377
    https://doi.org/10.1017/CBO9781139764377 [Google Scholar]
  7. Bruns, A.
    (2019) After the ‘APIcalypse’: Social media platforms and their fight against critical scholarly research. Information, Communication & Society, (), –. 10.1080/1369118X.2019.1637447
    https://doi.org/10.1080/1369118X.2019.1637447 [Google Scholar]
  8. Clausen, Y., & Scheffler, T.
    (2020) A corpus-based analysis of meaning variations in German tag questions: Evidence from spoken and written conversational corpora. Corpus Linguistics and Linguistic Theory, (), –. 10.1515/cllt‑2019‑0060
    https://doi.org/10.1515/cllt-2019-0060 [Google Scholar]
  9. Coats, S.
    (2017) Gender and lexical type frequencies in Finland Twitter English. InT. Hiltunen, J. McVeigh, & T. Säily (Eds.), Big and rich data in English corpus linguistics: Methods and explorations (Studies in variation, contacts and change in English 19). Varieng. https://varieng.helsinki.fi/series/volumes/19/coats/
    [Google Scholar]
  10. Davies, M.
    (2013) Corpus of Global Web-Based English. https://www.english-corpora.org/glowbe/
    [Google Scholar]
  11. (2015) Corpora: An introduction. InD. Biber & R. Reppen (Eds.), The Cambridge handbook of English corpus linguistics (pp.–). Cambridge University Press. 10.1017/CBO9781139764377.002
    https://doi.org/10.1017/CBO9781139764377.002 [Google Scholar]
  12. Dijkstra, J., Heeringa, W., Jongbloed-Faber, L., & Van de Velde, H.
    (2021) Using Twitter data for the study of language change in low-resource languages. A panel study of relative pronouns in Frisian. Frontiers in Artificial Intelligence, , Article e644554. 10.3389/frai.2021.644554
    https://doi.org/10.3389/frai.2021.644554 [Google Scholar]
  13. Dunbar, R. I. M.
    (2020) Structure and function in human and primate social networks: Implications for diffusion, network stability and health. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, (), Article e20200446. 10.1098/rspa.2020.0446
    https://doi.org/10.1098/rspa.2020.0446 [Google Scholar]
  14. Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P.
    (2014) Diffusion of lexical change in social media. PLOS ONE, (), Article e113114. 10.1371/journal.pone.0113114
    https://doi.org/10.1371/journal.pone.0113114 [Google Scholar]
  15. Fiil-Flynn, S. M., Butler, B., Carroll, M., Cohen-Sasson, O., Craig, C., Guibault, L., Jaszi, P., Jütte, B. J., Katz, A., Quintais, J. P., Margoni, T., Souza, A. R., Sag, M., Samberg, R., Schirru, L., Senftleben, M., Tur-Sinai, O., & Contreras, J. L.
    (2022) Legal reform to enhance global text and data mining research. Science, (), –. 10.1126/science.add6124
    https://doi.org/10.1126/science.add6124 [Google Scholar]
  16. Flanagan, J.
    (2017) Reproducible research: Strategies, tools, and workflows. InT. Hiltunen, J. McVeigh, & T. Säily (Eds.), Big and rich data in English corpus linguistics: Methods and explorations (Studies in variation, contacts and change in English 19). Varieng. https://varieng.helsinki.fi/series/volumes/19/flanagan/
    [Google Scholar]
  17. Francis, W. N., & Kučera, H.
    (1964) A Standard Corpus of Present-Day Edited American English, for use with digital computers. Department of Linguistics, Brown University.
    [Google Scholar]
  18. Gonçalves, B., Loureiro-Porto, L., Ramasco, J. J., & Sánchez, D.
    (2018) Mapping the Americanization of English in space and time. PLOS ONE, (), Article e0197741. 10.1371/journal.pone.0197741
    https://doi.org/10.1371/journal.pone.0197741 [Google Scholar]
  19. Grieve, J.
    (2021) Observation, experimentation, and replication in linguistics. Linguistics, (), –. 10.1515/ling‑2021‑0094
    https://doi.org/10.1515/ling-2021-0094 [Google Scholar]
  20. Grieve, J., Montgomery, C., Nini, A., Murakami, A., & Guo, D.
    (2019) Mapping lexical dialect variation in British English using Twitter. Frontiers in Artificial Intelligence, , Article 11. 10.3389/frai.2019.00011
    https://doi.org/10.3389/frai.2019.00011 [Google Scholar]
  21. Grieve, J., Nini, A., & Guo, D.
    (2017) Analyzing lexical emergence in American English online. English Language and Linguistics, (), –. 10.1017/S1360674316000113
    https://doi.org/10.1017/S1360674316000113 [Google Scholar]
  22. (2018) Mapping lexical innovation on American social media. Journal of English Linguistics, (), –. 10.1177/0075424218793191
    https://doi.org/10.1177/0075424218793191 [Google Scholar]
  23. Groves, R. M., & Couper, M. P.
    (1998) Nonresponse in household interview surveys. Wiley. 10.1002/9781118490082
    https://doi.org/10.1002/9781118490082 [Google Scholar]
  24. Hardie, A.
    (2012) CQPweb — combining power, flexibility and usability in a corpus analysis tool. International Journal of Corpus Linguistics, (), –. 10.1075/ijcl.17.3.04har
    https://doi.org/10.1075/ijcl.17.3.04har [Google Scholar]
  25. Huang, Y., Guo, D., Kasakoff, A., & Grieve, J.
    (2016) Understanding U.S. regional linguistic variation with Twitter data analysis. Computers, Environment and Urban Systems, , –. 10.1016/j.compenvurbsys.2015.12.003
    https://doi.org/10.1016/j.compenvurbsys.2015.12.003 [Google Scholar]
  26. Hundt, M., Lehmann, H. M., & Schneider, G.
    (2023) The International Corpus of English. RetrievedJanuary 7, 2025, fromhttps://www.ice-corpora.uzh.ch/en.html
    [Google Scholar]
  27. Kathpalia, S.
    (2023) Satiric parody through Indian English tweets in Twitter. World Englishes, (), –. 10.1111/weng.12579
    https://doi.org/10.1111/weng.12579 [Google Scholar]
  28. Kazansky, B., Torres, G., van der Velden, L., Wissenbach, K., & Milan, S.
    (2019) Data for the social good: Toward a data-activist research agenda. InA. Daly, S. K. Devitt, & M. Mann (Eds.), Good data (pp.–). Institute of Network Cultures.
    [Google Scholar]
  29. Kellert, O., & Matlis, N. H.
    (2022) Geolocation of multiple sociolinguistic markers in Buenos Aires. PLOS ONE, (), Article e0274114. 10.1371/journal.pone.0274114
    https://doi.org/10.1371/journal.pone.0274114 [Google Scholar]
  30. Laitinen, M., & Fatemi, M.
    (2022) Big and rich social networks in computational sociolinguistics. InP. Rautionaho, H. Parviainen, M. Kaunisto, & A. Nurmi (Eds.), Social and regional variation in World Englishes: Local and global perspectives (pp.–). Routledge. 10.4324/9781003227342‑9
    https://doi.org/10.4324/9781003227342-9 [Google Scholar]
  31. Laitinen, M., & Lundberg, J.
    (2020) ELF, language change, and social networks: Evidence from real-time social media data. InA. Mauranen & S. Vetchinnikova (Eds.), Language change: The impact of English as a lingua franca (pp.–). Cambridge University Press. 10.1017/9781108675000.011
    https://doi.org/10.1017/9781108675000.011 [Google Scholar]
  32. Laitinen, M., Lundberg, J., Levin, M., & Lakaw, A.
    (2017) Utilizing multilingual language data in (nearly) real time: The case of the Nordic Tweet Stream. The Journal of Universal Computer Science, , –. 10.3217/jucs‑023‑11‑1038
    https://doi.org/10.3217/jucs-023-11-1038 [Google Scholar]
  33. Li, H., Dunn, J., & Nini, A.
    (2022) Register variation remains stable across 60 languages. Corpus Linguistics and Linguistic Theory, (), –. 10.1515/cllt‑2021‑0090
    https://doi.org/10.1515/cllt-2021-0090 [Google Scholar]
  34. Liimatta, A.
    (2021) Using lengthwise scaling to compare feature frequencies across text lengths on Reddit. InS. Rüdiger & D. Dayter (Eds.), Corpus approaches to social media (pp.–). John Benjamins. 10.1075/scl.98.05lii
    https://doi.org/10.1075/scl.98.05lii [Google Scholar]
  35. Love, R., Dembry, C., Hardie, A., Brezina, V., & McEnery, T.
    (2017) The Spoken BNC2014: Designing and building a spoken corpus of everyday conversations. International Journal of Corpus Linguistics, (), –. 10.1075/ijcl.22.3.02lov
    https://doi.org/10.1075/ijcl.22.3.02lov [Google Scholar]
  36. Lüdeling, A., & Kytö, M.
    (2009) Corpus linguistics: An international handbook. De Gruyter Mouton. 10.1515/9783110213881.2
    https://doi.org/10.1515/9783110213881.2 [Google Scholar]
  37. Lundberg, J., Nordqvist, J., & Laitinen, M.
    (2019) Towards a language independent Twitter bot detector. InC. Navarretta, M. Agirrezabal, & B. Maegaard (Eds.), Proceedings of the Digital Humanities in the Nordic Countries 4th Conference (pp.–). University of Copenhagen. https://ceur-ws.org/Vol-2364/28_paper.pdf. 10.5617/dhnbpub.11105
    https://doi.org/10.5617/dhnbpub.11105 [Google Scholar]
  38. Ma, X., Cheng, J., Iyer, S., & Naaman, M.
    (2019) When do people trust their social groups?InS. Brewster, G. Fitzpatrick, A. Cox, & V. Kostakos (Eds.), CHI '19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Paper 67. Association for Computing Machinery.
    [Google Scholar]
  39. Milroy, L., & Milroy, J.
    (1992) Social network and social class: Toward an integrated sociolinguistic model. Language in Society, (), –. 10.1017/S0047404500015013
    https://doi.org/10.1017/S0047404500015013 [Google Scholar]
  40. Morstatter, F., Wu, L., Nazer, T. H., Carley, K. M., & Liu, H.
    (2016) A new approach to bot detection: Striking the balance between precision and recall. InR. Kumar, J. Caverlee, & H. Tong (Eds.), Proceedings of the 2016 IEEE/ACM international conference on advances in social networks analysis and mining (pp.–). IEEE press. 10.1109/ASONAM.2016.7752287
    https://doi.org/10.1109/ASONAM.2016.7752287 [Google Scholar]
  41. National Academies of Sciences, Engineering, and Medicine (NAS)
    National Academies of Sciences, Engineering, and Medicine (NAS) (2019) Reproducibility and replicability in science. The National Academies Press. 10.17226/25303
    https://doi.org/10.17226/25303 [Google Scholar]
  42. Nevalainen, T., Raumolin-Brunberg, H., Keränen, J., Nevala, M., Nurmi, A., & Palander-Collin, M.
    (1993–) Corpus of Early English Correspondence. https://varieng.helsinki.fi/CoRD/corpora/CEEC/
    [Google Scholar]
  43. Nevalainen, T., Tyrkkö, J., & Minna Palander-Collin, M.
    (n.d.). Corpus Resource Database. https://varieng.helsinki.fi/CoRD/
    [Google Scholar]
  44. Schweinberger, M., & Flanagan, J.
    (2021) Replication and reproducibility in English corpus linguistics [Workshop]. 6th meeting of the International Society for the Linguistics of English (ISLE 6), Joensuu, Finland.
    [Google Scholar]
  45. Shakir, M., & Deuber, D.
    (2018) A multidimensional study of interactive registers in Pakistani and US English. World Englishes, (), –. 10.1111/weng.12352
    https://doi.org/10.1111/weng.12352 [Google Scholar]
  46. Sönning, L., & Werner, V.
    (2021) The replication crisis, scientific revolutions, and linguistics. Linguistics, (), –. 10.1515/ling‑2019‑0045
    https://doi.org/10.1515/ling-2019-0045 [Google Scholar]
  47. Statista
    Statista (2022) Number of worldwide social media users. RetrievedNovember 19, 2022, fromhttps://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
    [Google Scholar]
  48. Truan, N.
    (2023) “I am a real cat”: French-speaking cats on Twitter as an enregistered variety and community of practice. Internet Pragmatics, (), –. 10.1075/ip.00083.tru
    https://doi.org/10.1075/ip.00083.tru [Google Scholar]
  49. Tyrkkö, J., Levin, M., & Laitinen, M.
    (2021) Actually in Nordic tweets. World Englishes, (), –. 10.1111/weng.12545
    https://doi.org/10.1111/weng.12545 [Google Scholar]
  50. Van Hee, C., Lefever, E., & Hoste, V.
    (2018) We usually don’t like going to the dentist: Using common sense to detect irony on Twitter. Computational Linguistics, (), –. 10.1162/coli_a_00337
    https://doi.org/10.1162/coli_a_00337 [Google Scholar]
  51. Wachter, S., Mittelstadt, B., & Russell, C.
    (2024) Do large language models have a legal duty to tell the truth?Royal Society Open Science, , Article e240197. 10.1098/rsos.240197
    https://doi.org/10.1098/rsos.240197 [Google Scholar]
  52. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R. … Mons, B.
    (2016) The FAIR guiding principles for scientific data management and stewardship. Scientific Data, , Article e160018. 10.1038/sdata.2016.18
    https://doi.org/10.1038/sdata.2016.18 [Google Scholar]
  53. Ahn, H., Choi, N., & Kiaer, J.
    (2020) South Korean perceptions of “native” speaker of English in social and news media via big data analytics. Journal of English as a Lingua Franca, (), –. 10.1515/jelf‑2020‑2031
    https://doi.org/10.1515/jelf-2020-2031 [Google Scholar]
  54. Altahmazi, T. H.
    (2020) Collective pragmatic acting in networked spaces: The case of #activism in Arabic and English Twitter discourse. Lingua, , Article e102837. 10.1016/j.lingua.2020.102837
    https://doi.org/10.1016/j.lingua.2020.102837 [Google Scholar]
  55. Bednarek, M., Ross, A. S., Boichak, O., Doran, Y. J., Carr, G., Altmann, E. G., & Alexander, T. J.
    (2022) Winning the discursive struggle? The impact of a significant environmental crisis event on dominant climate discourses on Twitter. Discourse, Context & Media, , Article e100564. 10.1016/j.dcm.2021.100564
    https://doi.org/10.1016/j.dcm.2021.100564 [Google Scholar]
  56. Breeze, R.
    (2020) Exploring populist styles of political discourse in Twitter. World Englishes, (), –. 10.1111/weng.12496
    https://doi.org/10.1111/weng.12496 [Google Scholar]
  57. Clarke, I.
    (2019) Functional linguistic variation in Twitter trolling. International Journal of Speech, Language and the Law, (), –. 10.1558/ijsll.34803
    https://doi.org/10.1558/ijsll.34803 [Google Scholar]
  58. Clarke, I., & Grieve, J.
    (2019) Stylistic variation on the Donald Trump Twitter account: A linguistic analysis of tweets posted between 2009 and 2018. PLOS ONE, (), Article e0222062. 10.1371/journal.pone.0222062
    https://doi.org/10.1371/journal.pone.0222062 [Google Scholar]
  59. Clausen, Y., & Scheffler, T.
    (2020) A corpus-based analysis of meaning variations in German tag questions Evidence from spoken and written conversational corpora. Corpus Linguistics and Linguistic Theory, (), –. 10.1515/cllt‑2019‑0060
    https://doi.org/10.1515/cllt-2019-0060 [Google Scholar]
  60. Coats, S.
    (2019) Language choice and gender in a Nordic social media corpus. Nordic Journal of Linguistics, (), –. 10.1017/S0332586519000039
    https://doi.org/10.1017/S0332586519000039 [Google Scholar]
  61. Dijkstra, J., Heeringa, W., Jongbloed-Faber, L., & Van de Velde, H.
    (2021) Using Twitter data for the study of language change in low-resource languages. A panel study of relative pronouns in Frisian. Frontiers in Artificial Intelligence, , Article e644554. 10.3389/frai.2021.644554
    https://doi.org/10.3389/frai.2021.644554 [Google Scholar]
  62. Durham, M.
    (2017) Changing attitudes towards the Welsh English accent: A view from Twitter. InM. Durham & J. Morris (Eds.). Sociolinguistics in Wales (pp.–). Palgrave Macmillan. 10.1057/978‑1‑137‑52897‑1_7
    https://doi.org/10.1057/978-1-137-52897-1_7 [Google Scholar]
  63. Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P.
    (2014) Diffusion of lexical change in social media. PLOS ONE, (), Article e113114. 10.1371/journal.pone.0113114
    https://doi.org/10.1371/journal.pone.0113114 [Google Scholar]
  64. Gautier, M.
    (2021) ‘Eww wtf, what a dumb bitch’: A case study of similitudes inside gender-specific swearing patterns on Twitter. Corpora, (), –. 10.3366/cor.2021.0208
    https://doi.org/10.3366/cor.2021.0208 [Google Scholar]
  65. Grieve, J., Montgomery, C., Nini, A., Murakami, A., & Guo, D.
    (2019) Mapping lexical dialect variation in British English using Twitter. Frontiers in Artificial Intelligence, , Article 11. 10.3389/frai.2019.00011
    https://doi.org/10.3389/frai.2019.00011 [Google Scholar]
  66. Grieve, J., Nini, A., & Guo, D.
    (2017) Analyzing lexical emergence in American English online. English Language and Linguistics, (), –. 10.1017/S1360674316000113
    https://doi.org/10.1017/S1360674316000113 [Google Scholar]
  67. Huang, Y., Guo, D., Kasakoff, A., & Grieve, J.
    (2016) Understanding U.S. regional linguistic variation with Twitter data analysis. Computers, Environment and Urban Systems, , –. 10.1016/j.compenvurbsys.2015.12.003
    https://doi.org/10.1016/j.compenvurbsys.2015.12.003 [Google Scholar]
  68. Kathpalia, S.
    (2023) Satiric parody through Indian English tweets in Twitter. World Englishes, (), –. 10.1111/weng.12579
    https://doi.org/10.1111/weng.12579 [Google Scholar]
  69. Kellert, O., & Matlis, N. H.
    (2022) Geolocation of multiple sociolinguistic markers in Buenos Aires. PLOS ONE, (), Article e0274114. 10.1371/journal.pone.0274114
    https://doi.org/10.1371/journal.pone.0274114 [Google Scholar]
  70. Laitinen, M.
    (2020) Empirical perspectives on English as a lingua franca (ELF) grammar. World Englishes, (), –. 10.1111/weng.12482
    https://doi.org/10.1111/weng.12482 [Google Scholar]
  71. Li, H., Dunn, J., & Nini, A.
    (2023) Register variation remains stable across 60 languages. Corpus Linguistics and Linguistic Theory, (), –. 10.1515/cllt‑2021‑0090
    https://doi.org/10.1515/cllt-2021-0090 [Google Scholar]
  72. McClaughlin, E., Clancy, C., & Cooke, F.
    (2022) Donkey discourse: Corpus linguistics and charity communications for improved animal welfare. Applied Corpus Linguistics, (), Article e100019. 10.1016/j.acorp.2022.100019
    https://doi.org/10.1016/j.acorp.2022.100019 [Google Scholar]
  73. Moreo, A., & Sebastiani, F.
    (2022) Tweet sentiment quantification: An experimental re-evaluation. PLOS ONE, (), . 10.1371/journal.pone.0263449
    https://doi.org/10.1371/journal.pone.0263449 [Google Scholar]
  74. Ross, A. S., & Rivers, D. J.
    (2020) Donald Trump, legitimisation and a new political rhetoric. World Englishes, (), –. 10.1111/weng.12501
    https://doi.org/10.1111/weng.12501 [Google Scholar]
  75. Shakir, M., & Deuber, D.
    (2018) A multidimensional study of interactive registers in Pakistani and US English. World Englishes, (), –. 10.1111/weng.12352
    https://doi.org/10.1111/weng.12352 [Google Scholar]
  76. Strelluf, C.
    (2022) Regional variation and syntactic derivation of low-frequency need-passives on Twitter. Journal of English Linguistics, (), –. 10.1177/00754242211066971
    https://doi.org/10.1177/00754242211066971 [Google Scholar]
  77. Truan, N.
    (2023) “I am a real cat”: French-speaking cats on Twitter as an enregistered variety and community of practice. Internet Pragmatics, (), –. 10.1075/ip.00083.tru
    https://doi.org/10.1075/ip.00083.tru [Google Scholar]
  78. Tyrkkö, J., Levin, M., & Laitinen, M.
    (2021) Actually in Nordic tweets. World Englishes, (), –. 10.1111/weng.12545
    https://doi.org/10.1111/weng.12545 [Google Scholar]
  79. Van Hee, C., Lefever, E., & Hoste, V.
    (2018) We usually don’t like going to the dentist: Using common sense to detect irony on Twitter. Computational Linguistics, (), –. 10.1162/coli_a_00337
    https://doi.org/10.1162/coli_a_00337 [Google Scholar]
  80. van Vliet, L.
    (2021) Moral expressions in 280 characters or less: An analysis of politician tweets following the 2016 Brexit referendum vote. Frontiers in Big Data, , Article e699653. 10.3389/fdata.2021.699653
    https://doi.org/10.3389/fdata.2021.699653 [Google Scholar]
  81. Wicke, P., & Bolognesi, M. M.
    (2020) Framing COVID-19: How we conceptualize and discuss the pandemic on Twitter. PLOS ONE, (), Article e0240010. 10.1371/journal.pone.0240010
    https://doi.org/10.1371/journal.pone.0240010 [Google Scholar]
  82. Wikström, P.
    (2016) No one is “pro-politically correct”: Positive construals of political correctness in Twitter conversations. Nordic Journal of English Studies, (), –. 10.35360/njes.368
    https://doi.org/10.35360/njes.368 [Google Scholar]
/content/journals/10.1075/ijcl.24136.lai
Loading
/content/journals/10.1075/ijcl.24136.lai
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: social media data ; research infrastructures ; replicability ; reproducibility ; metadata
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error