1887
Volume 26, Issue 2
  • ISSN 1384-6647
  • E-ISSN: 1569-982X
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Computer-assisted interpreting (CAI) tools use speech recognition and machine translation to display numbers and names on a screen or automatically suggest renditions for technical terms. One way to improve the usability of CAI tools may be to use augmented reality (AR) technology, which allows information to be displayed wherever convenient. Instead of having to look down at a tablet or a laptop, the interpreter can see the term or number projected directly into their field of vision, allowing them to maintain their focus on the speaker and the audio input. In this study, we investigated the affordances of AR in simultaneous interpreting. Nine professional conference interpreters each interpreted two technical talks: one with numerals, proper nouns and suggestions for technical terms automatically shown on an AR display and the other with an MS Word glossary on a laptop. The results indicate a hypothetical use case for AR technologies in interpreting but highlight the practical limitations, such as a lack of comfort in wearing the AR equipment, a lack of ergonomic and intuitive interaction with virtual objects, and distraction and interference with the interpreting process in the form of additional visual input.

Loading

Article metrics loading...

/content/journals/10.1075/intp.00108.gie
2024-10-03
2025-06-16
Loading full text...

Full text loading...

References

  1. Boersma, P. & Weenink, D.
    (2013) Praat: Doing phonetics by computer (5.3.51) [computer software]. www.praat.org (accessed27 November 2023).
    [Google Scholar]
  2. Brooke, J.
    (1996) SUS: A ‘quick and dirty’ usability scale. InP. Jordan, W. B. Thomas, I. L. McClelland & B. Weerdmeester (Eds.), Usability evaluation in industry. London: CRC Press, 189–194.
    [Google Scholar]
  3. Chang, C., Wu, M. M. & Kuo, T. G.
    (2018) Conference interpreting and knowledge acquisition: How professional interpreters tackle unfamiliar topics. Interpreting20 (2), 204–231. 10.1075/intp.00010.cha
    https://doi.org/10.1075/intp.00010.cha [Google Scholar]
  4. Chang, H.-Y., Binali, T., Liang, J.-C., Chiou, G.-L., Cheng, K.-H., Lee, S. W.-Y. & Tsai, C.-C.
    (2022) Ten years of augmented reality in education: A meta-analysis of (quasi-) experimental studies to investigate the impact. Computers & Education1911, 104641. 10.1016/j.compedu.2022.104641
    https://doi.org/10.1016/j.compedu.2022.104641 [Google Scholar]
  5. Chung, T. M. & Nation, P.
    (2004) Identifying technical vocabulary. System32 (2), 251–263. 10.1016/j.system.2003.11.008
    https://doi.org/10.1016/j.system.2003.11.008 [Google Scholar]
  6. Clough, S. & Duff, M. C.
    (2020) The role of gesture in communication and cognition: Implications for understanding and treating neurogenic communication disorders. Frontiers in Human Neuroscience141, 323. 10.3389/fnhum.2020.00323
    https://doi.org/10.3389/fnhum.2020.00323 [Google Scholar]
  7. Corpas Pastor, G.
    (2022) Technology solutions for interpreters: The VIP system. Hermēneus. Revista de Traducción e Interpretación231, 91–123. 10.24197/her.23.2021.91‑123
    https://doi.org/10.24197/her.23.2021.91-123 [Google Scholar]
  8. Defrancq, B. & Fantinuoli, C.
    (2021) Automatic speech recognition in the booth: Assessment of system performance, interpreters’ performances and interactions in the context of numbers. Target33 (1), 73–102. 10.1075/target.19166.def
    https://doi.org/10.1075/target.19166.def [Google Scholar]
  9. Dehaene, S.
    (2011) The number sense: How the mind creates mathematics (2nd edition). New York: Oxford University Press.
    [Google Scholar]
  10. Desmet, B., Vandierendonck, M. & Defrancq, B.
    (2018) Simultaneous interpretation of numbers and the impact of technological support. InC. Fantinuoli (Ed.), Interpreting and technology. Berlin: Language Science Press, 13–27. 10.5281/zenodo.1493281
    https://doi.org/10.5281/zenodo.1493281 [Google Scholar]
  11. Fantinuoli, C.
    (2016) InterpretBank: Redefining computer-assisted interpreting tools. Proceedings of the 38th Conference Translating and the Computer. London: AsLing, 42–52.
    [Google Scholar]
  12. (2017) Speech recognition in the interpreter workstation. Proceedings of the 39th Conference Translating and the Computer. London: AsLing. 25–34. https://www.staff.uni-mainz.de/fantinuo/download/publications/Speech%20Recognition%20in%20the%20Interpreter%20Workstation.pdf
    [Google Scholar]
  13. Fantinuoli, C., Marchesini, G., Landan, D. & Horak, L.
    (2022) KUDO Interpreter Assist: Automated real-time support for remote interpretation. arXiv:2201.01800 [Cs]. arxiv.org/abs/2201.01800
    [Google Scholar]
  14. Frittella, F. M.
    (2023) Usability research for interpreter-centred technology: The case study of SmarTerp. Berlin: Language Science Press. 10.5281/ZENODO.7376351
    https://doi.org/10.5281/ZENODO.7376351 [Google Scholar]
  15. Frittella, F. M. & Rodríguez, S.
    (2022) Putting SmartTerp to test: A tool for the challenges of remote interpreting. INContext: Studies in Translation and Interculturalism2 (2), 137–166. 10.54754/incontext.v2i2.21
    https://doi.org/10.54754/incontext.v2i2.21 [Google Scholar]
  16. Gile, D.
    (2002) Les termes techniques en interprétation simultanée. Meta30 (3), 199–210. 10.7202/002891ar
    https://doi.org/10.7202/002891ar [Google Scholar]
  17. Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O’Neal, L., McLeod, L., Delacqua, G., Delacqua, F., Kirby, J. & Duda, S. N.
    (2019) The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics951, 103208. 10.1016/j.jbi.2019.103208
    https://doi.org/10.1016/j.jbi.2019.103208 [Google Scholar]
  18. Hart, S. G. & Staveland, L. E.
    (1988) Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology521, 139–183. 10.1016/S0166‑4115(08)62386‑9
    https://doi.org/10.1016/S0166-4115(08)62386-9 [Google Scholar]
  19. Jiang, H.
    (2013) The interpreter’s glossary in simultaneous interpreting: A survey. Interpreting15 (1), 74–93. 10.1075/intp.15.1.04jia
    https://doi.org/10.1075/intp.15.1.04jia [Google Scholar]
  20. Kipman, A. & Pollefeys, M.
    (2019, 3October). Hololens 2: Unpacked. https://video.ethz.ch/speakers/global-lecture/2019/61d6198e-bf0d-4970-962a-a56e70482fce.html (accessed27 November 2023).
  21. Kurz, I.
    (2002) Conference interpreting: Quality in the ears of the user. Meta46 (2), 394–409. 10.7202/003364ar
    https://doi.org/10.7202/003364ar [Google Scholar]
  22. Mckee, S. P. & Nakayama, K.
    (1984) The detection of motion in the peripheral visual field. Vision Research24 (1), 25–32. 10.1016/0042‑6989(84)90140‑8
    https://doi.org/10.1016/0042-6989(84)90140-8 [Google Scholar]
  23. Mellinger, C. D. & Hanson, T. A.
    (2018) Interpreter traits and the relationship with technology and visibility. Translation and Interpreting Studies13 (3), 366–392. 10.1075/tis.00021.mel
    https://doi.org/10.1075/tis.00021.mel [Google Scholar]
  24. Microsoft
    Microsoft (2023) Hololens 2 technical specifications. HoloLens21. https://www.microsoft.com/en-us/hololens/hardware#document-experiences (accessed27 November 2023).
    [Google Scholar]
  25. Milgram, P., Takemura, H., Utsumi, A. & Kishino, F.
    (1995) Augmented reality: A class of displays on the reality–virtuality continuum. InH. Das (Ed.), Proc. SPIE2351. Boston: SPIE, 282–292. 10.1117/12.197321
    https://doi.org/10.1117/12.197321 [Google Scholar]
  26. Parekh, P., Patel, S., Patel, N. & Shah, M.
    (2020) Systematic review and meta-analysis of augmented reality in medicine, retail, and games. Visual Computing for Industry, Biomedicine, and Art3 (1), 21. 10.1186/s42492‑020‑00057‑7
    https://doi.org/10.1186/s42492-020-00057-7 [Google Scholar]
  27. Prandi, B.
    (2015) The use of CAI tools in interpreters’ training: A pilot study. Proceedings of the 37th Conference Translating and the Computer. London: AsLing, 48–57.
    [Google Scholar]
  28. (2023) Computer-assisted simultaneous interpreting: A cognitive-experimental study on terminology. Berlin: Language Science Press. 10.5281/ZENODO.7143055
    https://doi.org/10.5281/ZENODO.7143055 [Google Scholar]
  29. R Core Team
    R Core Team (2020) R: A language and environment for statistical computing (3.6.3) [computer software]. https://www.R-project.org (accessed27 November 2023).
    [Google Scholar]
  30. Saeed, M. A., González, E. R., Korybski, T., Davitti, E. & Braun, S.
    (2022) Connected yet distant: An experimental study into the visual needs of the interpreter in remote simultaneous interpreting. InM. Kurosu (Ed.), Human–computer interaction. User experience and behavior. Cham: Springer, 214–232. 10.1007/978‑3‑031‑05412‑9_16
    https://doi.org/10.1007/978-3-031-05412-9_16 [Google Scholar]
  31. Seubert, S.
    (2019) Visuelle Informationen beim Simultandolmetschen: Eine Eyetracking-Studie. Berlin: Frank & Timme.
    [Google Scholar]
  32. Vater, C., Kredel, R. & Hossner, E.-J.
    (2017) Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion. Journal of Experimental Psychology: Human Perception and Performance43 (5), 903–913. 10.1037/xhp0000376
    https://doi.org/10.1037/xhp0000376 [Google Scholar]
  33. VERBI Software
    VERBI Software (2021) MAXDA. Software für qualitative Datenanalyse [Windows]. VERBI Software. www.maxqda.com (accessed27 November 2023).
    [Google Scholar]
  34. Wickham, H.
    (2016) ggplot2: Elegant graphics for data analysis. Cham: Springer. 10.1007/978‑3‑319‑24277‑4
    https://doi.org/10.1007/978-3-319-24277-4 [Google Scholar]
  35. Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y. & Liang, J.-C.
    (2013) Current status, opportunities and challenges of augmented reality in education. Computers & Education621, 41–49. 10.1016/j.compedu.2012.10.024
    https://doi.org/10.1016/j.compedu.2012.10.024 [Google Scholar]
  36. Xu, R.
    (2018) Corpus-based terminological preparation for simultaneous interpreting. Interpreting20 (1), 33–62. 10.1075/intp.00002.xu
    https://doi.org/10.1075/intp.00002.xu [Google Scholar]
  37. Ziegler, K. & Gigliobianco, S.
    (2018) Present? Remote? Remotely present! New technological approaches to remote simultaneous conference interpreting. InC. Fantinuoli (Ed.), Interpreting and technology. Berlin: Language Science Press, 119–139.
    [Google Scholar]
  38. Zwischenberger, C.
    (2010) Quality criteria in simultaneous interpreting: An international vs a national view. The Interpreters’ Newsletter151, 127–142.
    [Google Scholar]
/content/journals/10.1075/intp.00108.gie
Loading
/content/journals/10.1075/intp.00108.gie
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error