1887
Volume 22, Issue 3
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Persuasive social robots can influence human behavior through giving advice. The current study investigates whether references to prior discourse and signals of empathy make an advice-giving robot an even more effective persuader and whether participants follow the robot’s advice and drink even more water when the robot additionally uses these strategies. We recruited students and university staff for a lab-study in which three different robot personalities on the same robot type presented health-related information. In one condition, the robot gave advice and referred to something mentioned earlier in the conversation (i.e., to dialog history), in another condition, the robot gave advice and used empathic signals, and in the third condition, the robot gave advice only. Our results show that participants drank significantly more when the advice-giving robot also used the persuasive strategies of empathy and references to dialog history than when the robot only gave advice. This study shows that both strategies increase the persuasiveness of the robot and makes it more influential.

Loading

Article metrics loading...

/content/journals/10.1075/is.00010.lan
2022-03-28
2022-05-23
Loading full text...

Full text loading...

References

  1. Bickmore, T. W., & Picard, R. W.
    (2005) Establishing and maintaining long-term human-computer relationships. ACM Transactions on Computer-Human Interaction (TOCHI), 12(2), 293–327. 10.1145/1067860.1067867
    https://doi.org/10.1145/1067860.1067867 [Google Scholar]
  2. Christian, B.
    (2011) The most human human: What talking with computers teaches us about what it means to be alive. Anchor.
    [Google Scholar]
  3. Cramer, H., Goddijn, J., Wielinga, B., & Evers, V.
    (2010) Effects of (in) accurate empathy and situational valence on attitudes towards robots. In2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp.141–142). IEEE.
    [Google Scholar]
  4. Fischer, K., & Saunders, J.
    (2012, October). Getting acquainted with a developing robot. InInternational Workshop on Human Behavior Understanding (pp.125–133). Springer, Berlin, Heidelberg. 10.1007/978‑3‑642‑34014‑7_11
    https://doi.org/10.1007/978-3-642-34014-7_11 [Google Scholar]
  5. Fischer, K., Jensen, L. C., Zitzmann, N.
    (2022) Sharing the Situational Context Influences a Speaker’s (a Robot’s) Persuasiveness. Interaction Studies – in this volume.
    [Google Scholar]
  6. Fischer, K., Niebuhr, O., Jensen, L. C., & Bodenhagen, L.
    (2019) Speech melody matters – How robots profit from using charismatic speech. ACM Transactions on Human-Robot Interaction (THRI), 9(1), 1–21.
    [Google Scholar]
  7. Gonsior, B., Sosnowski, S., Mayer, C., Blume, J., Radig, B., Wollherr, D., & Kühnlenz, K.
    (2011) Improving aspects of empathy and subjective performance for HRI through mirroring facial expressions. In2011 RO-MAN (pp.350–356). IEEE. 10.1109/ROMAN.2011.6005294
    https://doi.org/10.1109/ROMAN.2011.6005294 [Google Scholar]
  8. Ham, J.
    (2022) Influencing Robot Influence: Personlization of Persuasive Robots. Interaction Studies – in this volume.
    [Google Scholar]
  9. Ham, J., Cuijpers, R. H., & Cabibihan, J.-J.
    (2015) Combining robotic persuasive strategies: The persuasive power of a storytelling robot that uses gazing and gestures. International Journal of Social Robotics. 10.1007/s12369‑015‑0280‑4
    https://doi.org/10.1007/s12369-015-0280-4 [Google Scholar]
  10. Hone, K.
    (2006) Empathic agents to reduce user frustration: The effects of varying agent characteristics. Interacting with computers, 18(2), 227–245. 10.1016/j.intcom.2005.05.003
    https://doi.org/10.1016/j.intcom.2005.05.003 [Google Scholar]
  11. Jensen, L. C.
    (2018) Effects of Contingent Robot Response to the Situatedness of Human-Robot Interactions. Ph.D. dissertation, University of Southern Denmark.
  12. Leite, I., Castellano, G., Pereira, A., Martinho, C., & Paiva, A.
    (2014) Empathic robots for long-term interaction. International Journal of Social Robotics, 6(3), 329–341. 10.1007/s12369‑014‑0227‑1
    https://doi.org/10.1007/s12369-014-0227-1 [Google Scholar]
  13. Leite, I., Pereira, A., Mascarenhas, S., Martinho, C., Prada, R., & Paiva, A.
    (2013) The influence of empathy in human–robot relations. International journal of human-computer studies, 71(3), 250–260. 10.1016/j.ijhcs.2012.09.005
    https://doi.org/10.1016/j.ijhcs.2012.09.005 [Google Scholar]
  14. Lisetti, C., Amini, R., Yasavur, U., & Rishe, N.
    (2013) I can help you change! an empathic virtual agent delivers behavior change health interventions. ACM Transactions on Management Information Systems (TMIS), 4(4), 1–28. 10.1145/2544103
    https://doi.org/10.1145/2544103 [Google Scholar]
  15. Liu, B., & Sundar, S. S.
    (2018) Should machines express sympathy and empathy? Experiments with a health advice chatbot. Cyberpsychology, Behavior, and Social Networking, 21(10), 625–636. 10.1089/cyber.2018.0110
    https://doi.org/10.1089/cyber.2018.0110 [Google Scholar]
  16. Mercier, H.
    (2020) Not born yesterday: The science of who we trust and what we believe. 10.1515/9780691198842
    https://doi.org/10.1515/9780691198842 [Google Scholar]
  17. Niculescu, A., van Dijk, B., Nijholt, A., Li, H., & See, S. L.
    (2013) Making social robots more attractive: the effects of voice pitch, humor and empathy. International journal of social robotics, 5(2), 171–191. 10.1007/s12369‑012‑0171‑x
    https://doi.org/10.1007/s12369-012-0171-x [Google Scholar]
  18. Ochs, M., Pelachaud, C., & Sadek, D.
    (2008) An empathic virtual dialog agent to improve human-machine interaction. InProceedings of the 7th international joint conference on Autonomous agents and multiagent systems-Volume 1 (pp.89–96).
    [Google Scholar]
  19. Paiva, A., Leite, I., Boukricha, H., & Wachsmuth, I.
    (2017) Empathy in virtual agents and robots: a survey. ACM Transactions on Interactive Intelligent Systems (TiiS), 7(3), 1–40. 10.1145/2912150
    https://doi.org/10.1145/2912150 [Google Scholar]
  20. Prendinger, H., & Ishizuka, M.
    (2005) The Empathic Companion: A Character-Based Interface That Addresses Users’ Affective States. Applied artificial intelligence, 19(3–4), 267–285. 10.1080/08839510590910174
    https://doi.org/10.1080/08839510590910174 [Google Scholar]
  21. Riek, L. D., Rabinowitch, T. C., Chakrabarti, B., & Robinson, P.
    (2009) How anthropomorphism affects empathy toward robots. InProceedings of the 4th ACM/IEEE international conference on Human robot interaction (pp.245–246). 10.1145/1514095.1514158
    https://doi.org/10.1145/1514095.1514158 [Google Scholar]
  22. Rosenthal-von der Pütten, A. M., Schulte, F. P., Eimler, S. C., Hoffmann, L., Sobieraj, S., Maderwald, S., Krämer, N. C., & Brand, M.
    (2013) Neural correlates of empathy towards robots. In2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp.215–216). IEEE. 10.1109/HRI.2013.6483578
    https://doi.org/10.1109/HRI.2013.6483578 [Google Scholar]
  23. SociBot
    SociBot: https://wiki.engineeredarts.co.uk/SociBot, last seenMarch 18, 2021
  24. Stephan, A.
    (2015) Empathy for artificial agents. International Journal of Social Robotics, 7(1), 111–116. 10.1007/s12369‑014‑0260‑0
    https://doi.org/10.1007/s12369-014-0260-0 [Google Scholar]
  25. Tapus, A., & Mataric, M. J.
    (2007) Emulating Empathy in Socially Assistive Robotics. InAAAI spring symposium: multidisciplinary collaboration for socially assistive robotics (pp.93–96).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.00010.lan
Loading
/content/journals/10.1075/is.00010.lan
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): dehydration; dialog design; human-robot interaction; persuasion

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error