Volume 22, Issue 3
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes



In the near future, robots will function in social roles and attempt to influence the user’s behavior and / or thinking. The current contribution analyses how to influence robot influence: Persuasive robots can be personalized to make them more effective. We present an overview of (1) the user characteristics to which persuasive robots can be personalized, (2) considering the specific current situation of a user; and (3) the robot characteristics that can be personalized. Thereby, we give an overview of how the persuasive robot’s physical appearance, behavior, (perceived) cognition and affect can be influenced to characteristics of the user (personalized) in order to make the robot more persuasive and thereby to understand better how the persuasive power of an embodied artificial social entity can be influenced.


Article metrics loading...

Loading full text...

Full text loading...


  1. Abraham, C., & Michie, S.
    (2008) A taxonomy of behavior change techniques used in interventions. Health Psychology, 27(3), 379–387. 10.1037/0278‑6133.27.3.379
    https://doi.org/10.1037/0278-6133.27.3.379 [Google Scholar]
  2. Albert, S., & Dabbs, J. M., Jr.
    (1970) Physical distance and persuasion. Journal of Personality and Social Psychology, 15(3), 265–270. 10.1037/h0029430
    https://doi.org/10.1037/h0029430 [Google Scholar]
  3. Allan, D. D., Vonasch, A., & Bartneck, C.
    (2021) The doors of social robot perception: The Influence of Implicit Self-theories. International Journal of Social Robotics, 1–14. 10.1007/s12369‑021‑00767‑9
    https://doi.org/10.1007/s12369-021-00767-9 [Google Scholar]
  4. Andrist, S., Ziadee, M., Boukaram, H., Mutlu, B., & Sakr, M.
    (2015) Effects of Culture on the Credibility of Robot Speech: A Comparison between English and Arabic. ACM/IEEE International Conference on Human-Robot Interaction. 2015. 10.1145/2696454.2696464
    https://doi.org/10.1145/2696454.2696464 [Google Scholar]
  5. Asch, S. E.
    (1946) Forming impressions of personality. The Journal of Abnormal and Social Psychology, 41 (3): 258–290. 10.1037/h0055756
    https://doi.org/10.1037/h0055756 [Google Scholar]
  6. (1951) Effects of group pressure upon the modification and distortion of judgment. InH. Guetzkow (ed.) Groups, Leadership and Men. Pittsburgh, PA: Carnegie Press.
    [Google Scholar]
  7. Bailenson, J. & Yee, N.
    (2005) Digital chameleons: Automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science, 16, 814–819. 10.1111/j.1467‑9280.2005.01619.x
    https://doi.org/10.1111/j.1467-9280.2005.01619.x [Google Scholar]
  8. Berdichevsky, D., & Neuschwander, E.
    (1999, May). Toward an ethics of persuasive technology. Communications of the ACM, 51–58. 10.1145/301353.301410
    https://doi.org/10.1145/301353.301410 [Google Scholar]
  9. Berkovsky, S., Freyne, J., & Oinas-Kukkonen, H.
    (2012) Influencing Individually: Fusing Personalization and Persuasion. ACM Transactions on Interactive Intelligent Systems (TiiS). 2. 10.1145/2209310.2209312
    https://doi.org/10.1145/2209310.2209312 [Google Scholar]
  10. Bernotat, J., & Eyssel, F., & Sachse, J.
    (2019) The (Fe)male Robot: How Robot Body Shape Impacts First Impressions and Trust Towards Robots. International Journal of Social Robotics.
    [Google Scholar]
  11. Cacioppo, J. T. & Petty, R. E.
    (1982) “The need for cognition”. Journal of Personality and Social Psychology, 42 (1): 116–131. 10.1037/0022‑3514.42.1.116
    https://doi.org/10.1037/0022-3514.42.1.116 [Google Scholar]
  12. Cacioppo, J. T., Petty, R. E., Kao, C. F., & Rodriguez, R.
    (1986) Central and peripheral routes to persuasion: An individual difference perspective. Journal of Personality and Social Psychology, 51 (5), 1032–1043. 10.1037/0022‑3514.51.5.1032
    https://doi.org/10.1037/0022-3514.51.5.1032 [Google Scholar]
  13. Chaiken, S., & Trope, Y.
    (Eds.) (1999) Dual-process theories in social psychology. The Guilford Press.
    [Google Scholar]
  14. Chidambaram, V., Chiang, Y-H., & Mutlu, B.
    (2012) Designing persuasive robots: how robots might persuade people using vocal and nonverbal cues. InProceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (HRI ’12). Association for Computing Machinery, New York, NY, USA, 293–300. 10.1145/2157689.2157798
    https://doi.org/10.1145/2157689.2157798 [Google Scholar]
  15. Cialdini, R. B., & Trost, M. R.
    (1998) Social influence: Social norms, conformity and compliance. InD. T. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), The handbook of social psychology (p.151–192). McGraw-Hill.
    [Google Scholar]
  16. Cialdini, R. B.
    (1984) Influence: the psychology of persuasion. William Morrow and Company, New York.
    [Google Scholar]
  17. Compton, J.
    (2013) Inoculation theory. InJ. P. Dillard & L. Shen (Eds.), The Sage handbook of persuasion: Developments in theory and practice (2nd ed.) (pp.220–236). Thousand Oaks, CA: Sage.
    [Google Scholar]
  18. Crano, W. & Prislin, R.
    (2006) Attitudes and Persuasion. Annual review of psychology. 57. 345–74. 10.1146/annurev.psych.57.102904.190034
    https://doi.org/10.1146/annurev.psych.57.102904.190034 [Google Scholar]
  19. Dijkstra, A.
    (2008) The Psychology of Tailoring-Ingredients in Computer-Tailored Persuasion. Social and Personality Psychology Compass, 2: 765–784. 10.1111/j.1751‑9004.2008.00081.x
    https://doi.org/10.1111/j.1751-9004.2008.00081.x [Google Scholar]
  20. Dijkstra, A., & Ballast, K.
    (2012) Personalization and perceived personal relevance in computer-tailored persuasion in smoking cessation. British Journal of Health Psychology, 17, 60–73. 10.1111/j.2044‑8287.2011.02029.x
    https://doi.org/10.1111/j.2044-8287.2011.02029.x [Google Scholar]
  21. Epley, N., Waytz, A. & Cacioppo, J.
    (2007) On Seeing Human: A Three-Factor Theory of Anthropomorphism. Psychological review, 114, 864–86. 10.1037/0033‑295X.114.4.864
    https://doi.org/10.1037/0033-295X.114.4.864 [Google Scholar]
  22. Eyssel, F. A., & Pfundmair, M.
    (2015) Predictors of psychological anthropomorphization, mind perception, and the fulfillment of social needs: A case study with a zoomorphic robot. In: Proceedings of the 24th IEEEInternational Symposium on Robot and Human Interactive Communication (RO-MAN 2015): 827–832. 10.1109/ROMAN.2015.7333647
    https://doi.org/10.1109/ROMAN.2015.7333647 [Google Scholar]
  23. Eyssel, F. A., & Reich, N.
    (2013) Loneliness makes the heart grow fonder (of robots). On the effects of loneliness on psychological anthropomorphism. In: Kuzuoka, H., ed.Proceedings of the 8th ACM/IEEEInternational Conference on Human-Robot Interaction (HRI 2013). Piscataway, NJ: IEEE Press: 121–122. 10.1109/HRI.2013.6483531
    https://doi.org/10.1109/HRI.2013.6483531 [Google Scholar]
  24. Fischer, K., Jensen, L. C., & Zitzmann, N.
    (2022) Sharing the situational context influences a speaker’s (a robot’s) persuasiveness. Interaction Studies, in this volume.
    [Google Scholar]
  25. Fogg, B. J.
    (2003) Persuasive technology: using computers to change what we think and do. Morgan Kaufmann, Amsterdam. 10.1016/B978‑155860643‑2/50011‑1
    https://doi.org/10.1016/B978-155860643-2/50011-1 [Google Scholar]
  26. (2009) A behavior model for persuasive design. InProceedings of the4th International Conference on Persuasive Technology (Persuasive ’09). Association for Computing Machinery, New York, NY, USA, Article40, 1–7. 10.1145/1541948.1541999
    https://doi.org/10.1145/1541948.1541999 [Google Scholar]
  27. Fountoukidou, S., Ham, J., Matzat, U., & Midden, C.
    (2020) Persuasive design principles and user models for people with motor disabilities. In: Spiros Nikolopoulos, Chandan Kumar & Ioannis Kompatsiaris (Eds): Signal Processing to Drive Human-Computer Interaction: EEG and eye-controlled interfaces. The Institution of Engineering and Technology, ISBN: 978-1-78561-919-9.
    [Google Scholar]
  28. Ghazali, A.
    (2019) Designing social cues for effective persuasive robots. Thesis published atEindhoven University of Technology.
    [Google Scholar]
  29. Ghazali, A. S., Ham, J., Barakova, E. I., & Markopoulos, P.
    (2018b) Poker face influence: Persuasive robot with minimal social cues triggers less psychological reactance. 27th IEEE International Symposium on Robot and Human Interactive Communication (IEEE RO-MAN 2018), 940–946.
    [Google Scholar]
  30. Ghazali, A., Ham, J., Barakova, E., & Markopoulos, P.
    (2018a) Effects of robot facial characteristics and gender in persuasive human-robot interaction. Frontiers in Robotics and AI. 10.3389/frobt.2018.00073
    https://doi.org/10.3389/frobt.2018.00073 [Google Scholar]
  31. Ghazali, A., Ham, J., Barakova, E., & Markopoulous, P.
    (2020) Persuasive robot acceptance model (PRAM): Roles of social responses within the acceptance model of persuasive robots. International Journal of Social Robotics, 1–18. 10.1007/s12369‑019‑00611‑1
    https://doi.org/10.1007/s12369-019-00611-1 [Google Scholar]
  32. Gibson, J. J.
    (1977) The theory of affordances. InShaw, R., Bransford, J. (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp.67–82). Hillsdale, NJ: Erlbaum.
    [Google Scholar]
  33. Goldstein, N. J., Cialdini, R. B., Griskevicius, V.
    (2008) A Room with a Viewpoint: Using Social Norms to Motivate Environmental Conservation in Hotels. Journal of Consumer Research, 35, 3, p.472–482. 10.1086/586910
    https://doi.org/10.1086/586910 [Google Scholar]
  34. Hall, C. S., Lindzey, G., & Campbell, J. B.
    (1998) Theories of personality, 4th ed.J. Wiley and Sons, New York.
    [Google Scholar]
  35. Halttu, K., Oduor, M., Tikka, P., & Oinas-Kukkonen, H.
    (2015) About the Persuasion Context for BCSSs: Analyzing the Contextual Factors. BCSS@PERSUASIVE 2015: 43–50.
    [Google Scholar]
  36. Ham, J., & Midden, C.
    (2014) A Persuasive Robot to Stimulate Energy Conservation: The Influence of Positive and Negative Social Feedback and Task Similarity on Energy Consumption Behavior. International Journal of Social Robotics. 10.1007/s12369‑013‑0205‑z
    https://doi.org/10.1007/s12369-013-0205-z [Google Scholar]
  37. Ham, J., & Spahn, A.
    (2015) Shall I show you some other shirts too? The ethics and psychology of social persuasive robots. In: Robert Trappl (Ed): A Construction Manual for Robot’s Ethical Systems, MIT Press 2015 10.1007/978‑3‑319‑21548‑8_4
    https://doi.org/10.1007/978-3-319-21548-8_4 [Google Scholar]
  38. Ham, J., Cuijpers, R. H., & Cabibihan, J.-J.
    (2015) Combining robotic persuasive strategies: The persuasive power of a storytelling robot that uses gazing and gestures. International Journal of Social Robotics. 10.1007/s12369‑015‑0280‑4
    https://doi.org/10.1007/s12369-015-0280-4 [Google Scholar]
  39. Ham, J., Esch, M. van, Limpens, Y., Pee, J. de, Cabibihan, J.-J., & Ge, S. S.
    (2012) The automaticity of social behavior towards robots: The influence of cognitive load on interpersonal distance to approachable versus less approachable robots. InS. S. Ge (Eds.): Proceedings of the International Conference on Social Robotics 2012, LNAI 7621, pp.15–25 2012 10.1007/978‑3‑642‑34103‑8_2
    https://doi.org/10.1007/978-3-642-34103-8_2 [Google Scholar]
  40. Ham, J., van Schendel, J., Koldijk, S., & Demerouti, E.
    (2016) Finding kairos: The influence of context-based timing on compliance with well-being triggers. Conference proceedings of Symbiotic 2016, Padua, Italy, September 2016.
    [Google Scholar]
  41. Haugtvedt, C. P., Petty, R. E., Cacioppo, J. T.
    (1992) Need for cognition and advertising: understanding the role of personality variables in consumer behavior. Journal of Consumer Psychology, 1 (3), 239–260. 10.1016/S1057‑7408(08)80038‑1
    https://doi.org/10.1016/S1057-7408(08)80038-1 [Google Scholar]
  42. Hemminghaus, J., & Kopp, S.
    (2017) Towards adaptive social behavior generation for assistive robots using reinforcement learning. In: Proceedings of the 2017 ACM/IEEE international conference on human–robot interaction, ACM, pp332–340. 10.1145/2909824.3020217
    https://doi.org/10.1145/2909824.3020217 [Google Scholar]
  43. Howard, J. A., Renfrow, D. G.
    (2006) Social Cognition. In: Delamater, J. (eds) Handbook of Social Psychology. Handbooks of Sociology and Social Research. Springer, Boston, MA. 10.1007/0‑387‑36921‑X_11
    https://doi.org/10.1007/0-387-36921-X_11 [Google Scholar]
  44. Janssen, J. & Bailenson, J., Ijsselsteijn, W., & Westerink, J.
    (2010) Intimate Heartbeats: Opportunities for Affective Communication Technology. Affective Computing, IEEE Transactions, 1, 72–80. 10.1109/T‑AFFC.2010.13
    https://doi.org/10.1109/T-AFFC.2010.13 [Google Scholar]
  45. Kaptein, M. C., Markopoulos, P., Ruyter de, B. E. R., & Aarts, E. H. L.
    (2015) Personalizing persuasive technologies: Explicit and implicit personalization using persuasion profiles. International Journal of Human Computer Studies, 77, 38–51. 10.1016/j.ijhcs.2015.01.004
    https://doi.org/10.1016/j.ijhcs.2015.01.004 [Google Scholar]
  46. Kaptein, M., de Ruyter, B., Markopoulos, P., & Aarts, E.
    (2012) Adaptive persuasive systems: a study of tailored persuasive text messages to reduce snacking. ACMTransactions on Interactive Intelligent Systems, 2. 10.1145/2209310.2209313
    https://doi.org/10.1145/2209310.2209313 [Google Scholar]
  47. Koranteng, F., Matzat, U., Ham, J., & Wiafe, I.
    (in press). The role of usability, aesthetics, usefulness and primary task support in predicting the perceived credibility of academic social networking sites. Behaviour & Information Technology. 10.1080/0144929X.2021.2009570
    https://doi.org/10.1080/0144929X.2021.2009570 [Google Scholar]
  48. Korn, O., Akalin, N., & Gouveia, R.
    (2021) Understanding Cultural Preferences for Social Robots: A Study in German and Arab Communities. ACM Transactions on Human-Robot Interaction, 10, 1–19. 10.1145/3439717
    https://doi.org/10.1145/3439717 [Google Scholar]
  49. Lee, I., Kim, J., Kim, J.
    (2005) Use contexts for the mobile internet: a longitudinal study monitoring actual use of mobile internet services. International Journal of Human-Computer Interaction, 18(3), 269–292. 10.1207/s15327590ijhc1803_2
    https://doi.org/10.1207/s15327590ijhc1803_2 [Google Scholar]
  50. Leite, I., Pereira, A., Castellano, G., Mascarenhas, S., Martinho, C., & Paiva, A.
    (2011) Modelling empathy in social robotic companions. In: International conference on user modeling, adaptation, and personalization. Springer, pp135–147.
    [Google Scholar]
  51. Lewin, K.
    (1951) Field theory in social science. New York: Harper.
    [Google Scholar]
  52. Leyzberg, D., Spaulding, S., Scassellati, B.
    (2014) Personalizing robot tutors to individuals’ learning differences. In: Proceedings of the 2014 ACM/IEEE international conference on human–robot interaction. ACM, pp423–430. 10.1145/2559636.2559671
    https://doi.org/10.1145/2559636.2559671 [Google Scholar]
  53. Maeda, R., Brščić, D., & Kanda, T.
    (2021) Influencing Moral Behavior Through Mere Observation of Robot Work: Video-based Survey on Littering Behavior. InProceedings of the 2021 ACM/IEEEInternational Conference on Human-Robot Interaction (HRI ’21). Association for Computing Machinery, New York, NY, USA, 83–91. 10.1145/3434073.3444680
    https://doi.org/10.1145/3434073.3444680 [Google Scholar]
  54. Makenova, Regina & Karsybayeva, Raushan & Sandygulova, Anara
    (2018) Exploring Cross-cultural Differences in Persuasive Robotics. 185–186. 10.1145/3173386.3177079
    https://doi.org/10.1145/3173386.3177079 [Google Scholar]
  55. Masthoff, J., Grasso, F., & Ham, J.
    (2014) Preface to the special issue on Personalisation and Behaviour Change. User Modeling and User-Adapted Interaction, 24. 10.1007/s11257‑014‑9151‑1
    https://doi.org/10.1007/s11257-014-9151-1 [Google Scholar]
  56. McGuire, W. J.
    (1964) Inducing resistance to persuasion. InL. Berkowitz (Ed.), Advances in experimental social psychology, 1, pp.191–229. New York: Academic Press. 10.1016/S0065‑2601(08)60052‑0
    https://doi.org/10.1016/S0065-2601(08)60052-0 [Google Scholar]
  57. Michie, S., van Stralen, M. M., & West, R.
    (2011) The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6 (1). 10.1186/1748‑5908‑6‑42
    https://doi.org/10.1186/1748-5908-6-42 [Google Scholar]
  58. Michie, S., West, R., Campbell, R., Brown, J., & Gainforth, H.
    (2014) ABC of Behaviour Change Theories. Silverback Publishing.
    [Google Scholar]
  59. Mileounis, A., Cuijpers, R., & Barakova, E.
    (2015) Creating Robots with Personality: The Effect of Personality on Social Intelligence. WINAC 2015. 10.1007/978‑3‑319‑18914‑7_13
    https://doi.org/10.1007/978-3-319-18914-7_13 [Google Scholar]
  60. Milgram, S.
    (1974) Obedience to authority: An experimental view. New York: Harper & Row.
    [Google Scholar]
  61. Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., & Hagita, N.
    (2008) Adapting robot behavior for human–robot interaction. IEEE Transactions Robot24(4):911–916. 10.1109/TRO.2008.926867
    https://doi.org/10.1109/TRO.2008.926867 [Google Scholar]
  62. Moscovici, S. & Gabriel, M. & Avermaet, E.
    (1985) Perspectives on Minority Influence. Canadian Journal of Sociology, 11. 10.1017/CBO9780511897566
    https://doi.org/10.1017/CBO9780511897566 [Google Scholar]
  63. Norman, D. A.
    (1999) Affordance, conventions, and design. Interactions6, 3, 38–43. 10.1145/301153.301168
    https://doi.org/10.1145/301153.301168 [Google Scholar]
  64. (2008) Signifiers, not affordances. Interactions, 15, 18–19. 10.1145/1409040.1409044
    https://doi.org/10.1145/1409040.1409044 [Google Scholar]
  65. Oinas-Kukkonen, H., & Harjumaa, M.
    (2009) Persuasive Systems Design: Key Issues, Process Model, and System Features. Communications of the Association for Information Systems, 24. 10.17705/1CAIS.02428
    https://doi.org/10.17705/1CAIS.02428 [Google Scholar]
  66. Orji, R.
    (2014) Exploring the Persuasiveness of Behavior Change Support Strategies and Possible Gender Differences. Workshop on Behavior Change Support Systems at the International Conference on Persuasive Technology, 2014.
    [Google Scholar]
  67. Orji, R., Kaptein, M., Ham, J., Oyibo, K., & Nwokeji, J. C.
    (2018) Proceedings of the Third International Workshop on Personalization in Persuasive Technology co-located with the 13th International Conference on Persuasive Technology, PPT@PERSUASIVE 2018, Waterloo, Canada, April 16, 2018. CEUR Workshop Proceedings 2089, CEUR-WS.org 2018.
    [Google Scholar]
  68. Orji, R., Nacke, L. E., & Di Marco, C.
    (2017) Towards personality-driven persuasive health games and gamified systems. Proceedings of the 2017 CHI Conference on Human, 2017. 10.1145/3025453.3025577
    https://doi.org/10.1145/3025453.3025577 [Google Scholar]
  69. Orji, R., Vassileva, J., & Mandryk, R. L.
    (2014) Modeling the efficacy of persuasive strategies for different gamer types in serious games for health. User Modeling and User-Adapted Interaction, 24 (5), 453–498. 10.1007/s11257‑014‑9149‑8
    https://doi.org/10.1007/s11257-014-9149-8 [Google Scholar]
  70. Oyibo, K., Orji, R., Ham, J., Nwokeji, J. C., & Ciocarlan, A.
    (2019) Special issue on Personalizing Persuasive Technologies. Information 2019, 10.
    [Google Scholar]
  71. Oyibo, K., Orji, R. & Vassileva, J.
    (2017) Investigation of the Persuasiveness of Social Influence in Persuasive Technology and the Effect of Age and Gender. Workshop on Personalizing Persuasive Technology at International Conference on Persuasive Technology, 32–44.
    [Google Scholar]
  72. Paradeda, R. B., Martinho, C., Paiva, A.
    (2017) Persuasion based on personality traits: Using a social robot as storyteller. Proceedings of the Companion of the 2017 ACM/IEEE Human Robot Interaction conference. 10.1145/3029798.3034824
    https://doi.org/10.1145/3029798.3034824 [Google Scholar]
  73. Petty, R. E., & Cacioppo, J. T.
    (1986) The elaboration likelihood model of persuasion. Advances in Experimental Social Psychology, 19 (1), 123–205. 10.1016/S0065‑2601(08)60214‑2
    https://doi.org/10.1016/S0065-2601(08)60214-2 [Google Scholar]
  74. Petty, R. E., & Wegener, D. T.
    (1999) The elaboration likelihood model: current status and controversies. In: Chaiken, S., Trope, Y. (Eds.), Dual-process Theories in Social Psychology. Guilford Press, New York, pp.41–72.
    [Google Scholar]
  75. Rea, D. J., Schneider, S., & Kanda, T.
    (2021) “Is this all you can do? Harder!”: The Effects of (Im)Polite Robot Encouragement on Exercise Effort. InProceedings of the 2021 ACM/IEEEInternational Conference on Human-Robot Interaction (HRI ’21). Association for Computing Machinery, New York, NY, USA, 225–233. 10.1145/3434073.3444660
    https://doi.org/10.1145/3434073.3444660 [Google Scholar]
  76. Reeves, B., & Nass, C.
    (1996) The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places. Cambridge University Press
    [Google Scholar]
  77. Ripple, L.
    (1955) Motivation, Capacity, and Opportunity as Related to the Use of Casework Service: Theoretical Base and Plan of Study. Social Service Review, 29 (2), 172–193. 10.1086/639813
    https://doi.org/10.1086/639813 [Google Scholar]
  78. Ritschel, H., Baur, T., Andre, E.
    (2017) Adapting a robot’s linguistic style based on socially-aware reinforcement learning. 10.1109/ROMAN.2017.8172330
    https://doi.org/10.1109/ROMAN.2017.8172330 [Google Scholar]
  79. Rosenberg, M. J. and Hovland, C. I.
    (1960) Cognitive, Affective and Behavioral Components of Attitudes. In: Rosenberg, M. J. and Hovland, C. I., Eds., Attitude Organization and Change: An Analysis of Consistency among Attitude Components, Yale University Press, New Haven.
    [Google Scholar]
  80. Roubroeks, M., Ham, J., & Midden, C.
    (2011) When artificial social agents try to persuade people: The role of social agency on the occurrence of psychological reactance. International Journal of Social Robotics, 3, 155–165. 10.1007/s12369‑010‑0088‑1
    https://doi.org/10.1007/s12369-010-0088-1 [Google Scholar]
  81. Ruijten, P.
    (2020) The similarity-attraction paradigm in persuasive technology: effects of system and user personality on evaluations and persuasiveness of an interactive system. Behaviour & Information Technology, 1–13.
    [Google Scholar]
  82. Ruijten, P. A. A., Midden, C. J. H., & Ham, J.
    (2015) Lonely and susceptible: The influence of social exclusion and gender on persuasion by an artificial agent. International Journal of Human-Computer Interaction. 10.1080/10447318.2015.1067480
    https://doi.org/10.1080/10447318.2015.1067480 [Google Scholar]
  83. Ruijten, P. A. M., Midden, C. J. H., & Ham, J.
    (2016) Ambiguous agents: The influence of consistency of an artificial agent’s social cues on emotion recognition, recall, and persuasiveness. International Journal of Human-Computer Interaction, 32, 734–744. 10.1080/10447318.2016.1193350
    https://doi.org/10.1080/10447318.2016.1193350 [Google Scholar]
  84. Rutherford, M. D., & Kuhlmeier, V. A.
    (Eds.) (2013) Social perception: Detection and interpretation of animacy, agency, and intention. MIT Press. 10.7551/mitpress/9780262019279.001.0001
    https://doi.org/10.7551/mitpress/9780262019279.001.0001 [Google Scholar]
  85. Salomons, N., van der Linden, M., Strohkorb Sebo, S., & Scassellati, B.
    (2018) Humans Conform to Robots: Disambiguating Trust, Truth, and Conformity. InProceedings of the 2018 ACM/IEEEInternational Conference on Human-Robot Interaction (HRI ’18). Association for Computing Machinery, New York, NY, USA, 187–195. 10.1145/3171221.3171282
    https://doi.org/10.1145/3171221.3171282 [Google Scholar]
  86. Schneider, S. & Kummert, F.
    (2020) Comparing Robot and Human guided Personalization: Adaptive Exercise Robots are Perceived as more Competent and Trustworthy. International Journal of Social Robotics.
    [Google Scholar]
  87. Siegel, M., Breazeal, C., & Norton, M. I.
    (2009) Persuasive robotics: the influence of robot gender on human behavior. In: IROS 2009, pp.2563–2568. 10.1109/IROS.2009.5354116
    https://doi.org/10.1109/IROS.2009.5354116 [Google Scholar]
  88. Spahn, A.
    (2012) and Lead Us (Not) into Persuasion…? Persuasive Technology and the Ethics of Communication. Science and Engineering Ethics18, 633–650 (2012) 10.1007/s11948‑011‑9278‑y
    https://doi.org/10.1007/s11948-011-9278-y [Google Scholar]
  89. Spelt, H. A. A., Westerink, J. H. D. M., Ham, J., & IJsselsteijn, W. A.
    (2020) Persuasion-Induced Physiology Partly Predicts Persuasion Effectiveness. IEEE Transactions on Affective Computing. 10.1109/TAFFC.2020.3022109
    https://doi.org/10.1109/TAFFC.2020.3022109 [Google Scholar]
  90. Tapus, A., & Ţapus, C., & Mataric, M.
    (2008) User-Robot Personality Matching and Robot Behavior Adaptation for Post-Stroke Rehabilitation Therapy. Intelligent Service Robotics, 1, 169–183. 10.1007/s11370‑008‑0017‑4
    https://doi.org/10.1007/s11370-008-0017-4 [Google Scholar]
  91. Trovato, G., Zecca, M., Sessa, S., Jamone, L., Ham, J., Hashimoto, K., & Takanishi, A.
    (2013) Cross-cultural study on human-robot greeting interaction: acceptance and discomfort by Egyptians and Japanese. Paladyn. Journal of Behavioral Robotics, 4, 83–93. 10.2478/pjbr‑2013‑0006
    https://doi.org/10.2478/pjbr-2013-0006 [Google Scholar]
  92. Tsiakas, K., Papakostas, M., Chebaa, B., Ebert, D., Karkaletsis, V., & Makedon, F.
    (2016) An interactive learning and adaptation framework for adaptive robot assisted therapy. PETRA. 10.1145/2910674.2935857
    https://doi.org/10.1145/2910674.2935857 [Google Scholar]
  93. Turner, J. & Oakes, P.
    (1986) The significance of the social identity concept for social psychology with reference to individualism, interactionism and social influence. British Journal of Social Psychology, 25 (3): 237–252. 10.1111/j.2044‑8309.1986.tb00732.x
    https://doi.org/10.1111/j.2044-8309.1986.tb00732.x [Google Scholar]
  94. Turner, J. C.; Reynolds, K. J.
    (2010) The story of social identity. InT. Postmes; N. Branscombe (eds.), Rediscovering Social Identity: Core Sources. Psychology Press.
    [Google Scholar]
  95. Ullrich, D., Butz, A. & Diefenbach, S.
    (2018) Who Do You Follow?: Social Robots’ Impact on Human Judgment. Companion of the 2018 ACM/IEEE International Conference, 265–266. 10.1145/3173386.3177014
    https://doi.org/10.1145/3173386.3177014 [Google Scholar]
  96. United Nations
    United Nations (2015) Transforming our world: the 2030 Agenda for Sustainable Development. Retrieved from: https://sdgs.un.org/goals
    [Google Scholar]
  97. Verbeek, P.-P.
    (2006) Persuasive technology and moral responsibility: Toward an ethical framework for persuasive technologies. Persuasive, 6, 1–15.
    [Google Scholar]
  98. Verberne, F. M. M., Ham, J., & Midden, C.
    (2012) Trust in smart systems: The influence of sharing user goals and information on trust in and acceptance of smart systems in cars. Human Factors, 54, 799–810. 10.1177/0018720812443825
    https://doi.org/10.1177/0018720812443825 [Google Scholar]
  99. Verberne, F., Ham, J., & Midden, C.
    (2013) The car that looks like me: Similarity cues can increase trust in the self-driving cars of the future. ERCIM News, 94, 23–24.
    [Google Scholar]
  100. Verberne, M. F., Ham, J., & Midden, J. H.
    (2015) Trusting a virtual driver that looks, acts, and thinks like you. Human Factors. 10.1177/0018720815580749
    https://doi.org/10.1177/0018720815580749 [Google Scholar]
  101. Wykowska, A. & Chellali, R., Al-Amin, M., & Müller, H.
    (2014) Implications of Robot Actions for Human Perception. How Do We Represent Actions of the Observed Robots?. International Journal of Social Robotics, 6. 10.1007/s12369‑014‑0239‑x
    https://doi.org/10.1007/s12369-014-0239-x [Google Scholar]
  102. Wykowska, A.
    (2020) Social Robots to Test Flexibility of Human Social Cognition. International Journal of Social Robotics, 12, 1203–1211. 10.1007/s12369‑020‑00674‑5
    https://doi.org/10.1007/s12369-020-00674-5 [Google Scholar]
  103. You, S., Robert, L., Alahmad, R., Esterwood, C., & Zhang, Q.
    (2020) A Review of Personality in Human-Robot Interactions. Foundations and Trends in Information Systems.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error