Volume 25, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes



MyJay is an open-source robot designed to facilitate play between children with and without physical disabilities. The robot acts as a proxy for children with upper limb challenges, allowing them to participate in physical games with their peers. Our design was inspired by the FIRST Robotics Competition, which involves teleoperating robots to manipulate objects. Taking a user-centred perspective, we consulted therapists and conducted remote interviews with children with disabilities and their guardians at various stages of the design process. We then conducted an in-person feasibility study with 18 typically developing children in a school setting. The study involved children teleoperating the robot to pick up and throw balls into a designated goal, and the interaction was evaluated using the user experience questionnaire and the Robotic Social Attributes Scale. The results of the study show great potential for MyJay to act as a play mediator in various scenarios, and the response from the children was positive. The ultimate aim of our research agenda is to pave the way towards creating more inclusive play environments through robot-mediated interactions, breaking barriers posed by physical limitations.


Article metrics loading...

Loading full text...

Full text loading...


  1. Adams, K., Julie, Y., & Cook, A. [Google Scholar]
  2. Ali, S., Moroso, T., & Breazeal, C.
    (2019) Can children learn creativity from a social robot?InProceedings of the 2019 on creativity and cognition (pp.359–368). 10.1145/3325480.3325499
    https://doi.org/10.1145/3325480.3325499 [Google Scholar]
  3. Alves-Oliveira, P., Arriaga, P., Paiva, A., & Hoffman, G.
    (2019) Guide to build yolo, a creativity-stimulating robot for children. HardwareX, 61, e00074. 10.1016/j.ohx.2019.e00074
    https://doi.org/10.1016/j.ohx.2019.e00074 [Google Scholar]
  4. Anderson, D. M., Bedini, L. A., & Moreland, L.
    (2005) Getting all girls into the game: Physically active recreation for girls with disabilities. Journal of Park & Recreation Administration, 23 (4).
    [Google Scholar]
  5. Azizi, N.
    (2022) Exploring the use of assistive robotics in play and education for children with disabilities (Master’s thesis). University of Waterloo.
    [Google Scholar]
  6. Besio, S.
    (2002) An italian research project to study the play of children with motor disabilities: The first year of activity. Disability and rehabilitation, 24 (1–3), 72–79. 10.1080/09638280110063878
    https://doi.org/10.1080/09638280110063878 [Google Scholar]
  7. Besio, S., Bulgarelli, D., & Stancheva-Popkostadinova, V.
    (2017) Play development in children with disabilties. De Gruyter Open Poland.
    [Google Scholar]
  8. Bickford, R. G., Daly, D., & Keith, H. M.
    (1953) Convulsive effects of light stimulation in children. AMA American journal of diseases of children, 86 (2), 170–183. https://jama​network.com/journals/jamapediatrics/article-abstract/496364. 10.1001/archpedi.1953.02050080179005
    https://doi.org/10.1001/archpedi.1953.02050080179005 [Google Scholar]
  9. Bjerke, T., Ødegårdstuen, T. S., & Kaltenborn, B. P.
    (1998) Attitudes toward animals among norwegian children and adolescents: Species preferences. Anthrozoös, 11 (4), 227–235. https://www.tandfonline.com/doi/pdf/10.2752/089279398787000544. 10.2752/089279398787000544
    https://doi.org/10.2752/089279398787000544 [Google Scholar]
  10. Brock, M. E., Dueker, S. A., & Barczak, M. A.
    (2018) Brief report: Improving social outcomes for students with autism at recess through peer-mediated pivotal response training. Journal of Autism and Developmental Disorders, 48 (6), 22242230. 10.1007/s10803‑017‑3435‑3
    https://doi.org/10.1007/s10803-017-3435-3 [Google Scholar]
  11. Canas, E., Garcia, A. M., Garrell, A., & Angulo, C.
    (2022) Initial test of “babyrobot” behaviour on a teleoperated toy substitution: Improving the motor skills of toddlers. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 708–712. 10.1109/HRI53351.2022.9889522
    https://doi.org/10.1109/HRI53351.2022.9889522 [Google Scholar]
  12. Cooper, A.
    (1999) The inmates are running the asylum. Springer. 10.1007/978‑3‑322‑99786‑9_1
    https://doi.org/10.1007/978-3-322-99786-9_1 [Google Scholar]
  13. Dautenhahn, K., Nehaniv, C., Walters, M., Robins, B., Kose, H., Mirza, N., & Blow, M.
    (2009) Kaspar – a minimally expressive humanoid robot for human-robot interaction research. Applied Bionics and Biomechanics, 61, 369–397. 10.1155/2009/708594
    https://doi.org/10.1155/2009/708594 [Google Scholar]
  14. de Wit, J., Willemsen, B., de Haas, M., Krahmer, E., Vogt, P., Merckens, M., Oostdijk, R., Savelberg, C., Verdult, S., & Wolfert, P.
    (2019) Playing charades with a robot: Collecting a large dataset of human gestures through hri. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 634–635. 10.1109/HRI.2019.8673220
    https://doi.org/10.1109/HRI.2019.8673220 [Google Scholar]
  15. dos Santos, T. F., de Castro, D. G., Masiero, A. A., & Aquino Junior, P. T.
    (2014) Behavioral persona for human-robot interaction: A study based on pet robot. Human-Computer Interaction. Advanced Interaction Modalities and Techniques: 16th International Conference, HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014, Proceedings, Part II 16, 687–696. 10.1007/978‑3‑319‑07230‑2_65
    https://doi.org/10.1007/978-3-319-07230-2_65 [Google Scholar]
  16. Duque, I., Dautenhahn, K., Koay, K. L., Christianson, B.,
    (2013) A different approach of using personas in human-robot interaction: Integrating personas as computational models to modify robot companions’ behaviour. 2013 IEEE RO-MAN, 424–429. 10.1109/ROMAN.2013.6628516
    https://doi.org/10.1109/ROMAN.2013.6628516 [Google Scholar]
  17. Ferrari, E., Robins, B., & Dautenhahn, K.
    (2009) Therapeutic and educational objectives in robot assisted play for children with autism. RO-MAN 2009-The 18th IEEE international symposium on robot and human interactive communication, 108–114. 10.1109/ROMAN.2009.5326251
    https://doi.org/10.1109/ROMAN.2009.5326251 [Google Scholar]
  18. Field, S. J., & Oates, R. K.
    (2001) Sport and recreation activities and opportunities for children with spina bifida and cystic fibrosis. Journal of Science and Medicine in Sport, 4 (1), 71–76. 10.1016/S1440‑2440(01)80009‑8
    https://doi.org/10.1016/S1440-2440(01)80009-8 [Google Scholar]
  19. Goldstein, H., English, K., Shafer, K., & Kaczmarek, L.
    (1997) Interaction among preschoolers with and without disabilities: Effects of across-the-day peer intervention. Journal of Speech, Language, and Hearing Research, 40 (1), 33–48. 10.1044/jslhr.4001.33
    https://doi.org/10.1044/jslhr.4001.33 [Google Scholar]
  20. Golinkoff, R. M., Chung, H. L., Hirsh-Pasek, K., Liu, J., Bertenthal, B. I., Brand, R., Maguire, M. J., & Hennon, E.
    (2002) Young children can extend motion verbs to point-light displays. Developmental psychology, 38 (4), 604. https://psycnet.apa.org/fulltext/2002-01756-012.pdf
    [Google Scholar]
  21. Gordon, N. S., Burke, S., Akil, H., Watson, S. J., & Panksepp, J.
    (2003) Socially-induced brain ‘fertilization’: Play promotes brain derived neurotrophic factor transcription in the amygdala and dorsolateral frontal cortex in juvenile rats. Neuroscience letters, 341 (1), 17–20. 10.1016/S0304‑3940(03)00158‑7
    https://doi.org/10.1016/S0304-3940(03)00158-7 [Google Scholar]
  22. Hutzler, Y., Fliess, O., Chacham, A., & Van den Auweele, Y.
    (2002) Perspectives of children with physical disabilities on inclusion and empowerment: Supporting and limiting factors. Adapted physical activity quarterly, 19 (3), 300–317. 10.1123/apaq.19.3.300
    https://doi.org/10.1123/apaq.19.3.300 [Google Scholar]
  23. Ivancevic, V. G., & Ivancevic, T. T.
    (2011) Lecture notes in lie groups.
    [Google Scholar]
  24. Kanda, S., Sawabe, T., Kanbara, M., Fujimoto, Y., & Kato, H.
    (2022) A communication robot for playing video games together to boost motivation for daily-use. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 831–833. 10.1109/HRI53351.2022.9889482
    https://doi.org/10.1109/HRI53351.2022.9889482 [Google Scholar]
  25. Koay, K. L., Webster, M., Dixon, C., Gainer, P., Syrdal, D., Fisher, M., & Dautenhahn, K.
    (2021) Use and usability of software verification methods to detect behaviour interference when teaching an assistive home companion robot: A proof-of-concept study. Paladyn, Journal of Behavioral Robotics, 12 (1), 402–422. 10.1515/pjbr‑2021‑0028
    https://doi.org/10.1515/pjbr-2021-0028 [Google Scholar]
  26. Kronreif, G., Prazak-Aram, B., Kornfeld, M., Stainer-Hochgatterer, A., & Fürst, M.
    (2007) Robot assistant “PlayROB” – user trials and results. RO-MAN 2007 – The 16th IEEE International Symposium on Robot and Human Interactive Communication, 113–117. 10.1109/ROMAN.2007.4415063
    https://doi.org/10.1109/ROMAN.2007.4415063 [Google Scholar]
  27. Kronreif, G., Prazak-Aram, B., Mina, S., Kornfeld, M., Meindl, M., & Fürst, M.
    (2005) PlayROB – Robot-assisted playing for children with severe physical disabilities. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, 193–196. 10.1109/ICORR.2005.1501082
    https://doi.org/10.1109/ICORR.2005.1501082 [Google Scholar]
  28. Lathan, C., Brisben, A., & Safos, C.
    (2005) Cosmobot levels the playing field for disabled children. Interactions, 12 (2), 14–16. 10.1145/1052438.1052453
    https://doi.org/10.1145/1052438.1052453 [Google Scholar]
  29. Mahdi, H.
    (2021) Developing a semi-autonomous robot to engage children with special needs and their peers in robot-assisted play (Master’s thesis). University of Waterloo.
    [Google Scholar]
  30. Mahdi, H., Saleh, S., Sanoubari, E., & Dautenhahn, K.
    (2021) User-centered social robot design: Involving children with special needs in an online world. 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 844–851. 10.1109/RO‑MAN50785.2021.9515417
    https://doi.org/10.1109/RO-MAN50785.2021.9515417 [Google Scholar]
  31. Mahdi, H., Saleh, S., Shariff, O., & Dautenhahn, K.
    (2020) Creating myjay: A new design for robot-assisted play for children with physical special needs. International Conference on Social Robotics, 676–687. 10.1007/978‑3‑030‑62056‑1_56
    https://doi.org/10.1007/978-3-030-62056-1_56 [Google Scholar]
  32. Michaud, F., & Théberge-Turmel, C.
    (2002) Mobile robotic toys and autism. InSocially intelligent agents (pp.125–132). Springer. 10.1007/0‑306‑47373‑9_15
    https://doi.org/10.1007/0-306-47373-9_15 [Google Scholar]
  33. Minamoto, A., & Zhang, Z.
    (2023) Aimoji, an affordable interaction kit that upcycles used toy as companion robot. Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 798–801. 10.1145/3568294.3580186
    https://doi.org/10.1145/3568294.3580186 [Google Scholar]
  34. Muñoz, J. E., & Dautenhahn, K.
    (2021) Robo ludens: A game design taxonomy for multiplayer games using socially interactive robots. ACM Transactions on Human-Robot Interaction (THRI), 10 (4), 1–28. 10.1145/3451343
    https://doi.org/10.1145/3451343 [Google Scholar]
  35. Papadopoulos, F., Dautenhahn, K., & Ho, W. C.
    (2012) Exploring the use of robots as social mediators in a remote human-human collaborative communication experiment. Paladyn, 3 (1), 1–10. 10.2478/s13230‑012‑0018‑z
    https://doi.org/10.2478/s13230-012-0018-z [Google Scholar]
  36. Plass, J. L., O’Keefe, P. A., Homer, B. D., Case, J., Hayward, E. O., Stein, M., & Perlin, K.
    (2013) The impact of individual, competitive, and collaborative mathematics game play on learning, performance, and motivation. Journal of educational psychology, 105 (4), 1050. 10.1037/a0032688
    https://doi.org/10.1037/a0032688 [Google Scholar]
  37. Power, T. G.
    (1999) Play and exploration in children and animals. Psychology Press. 10.4324/9781410603623
    https://doi.org/10.4324/9781410603623 [Google Scholar]
  38. Raj, L., & Czmerk, A.
    (2017) Modelling and simulation of the drivetrain of an omnidirectional mobile robot. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 58 (2), 232–243. 10.1080/00051144.2017.1391612
    https://doi.org/10.1080/00051144.2017.1391612 [Google Scholar]
  39. Rios-Rincon, A. M., Adams, K., Magill-Evans, J., & Cook, A.
    (2016) Playfulness in children with limited motor abilities when using a robot [PMID: 26566226]. Physical & Occupational Therapy in Pediatrics, 36 (3), 232–246. 10.3109/01942638.2015.1076559
    https://doi.org/10.3109/01942638.2015.1076559 [Google Scholar]
  40. Robins, B., Dautenhahn, K., & Dickerson, P.
    (2009) From isolation to communication: A case study evaluation of robot assisted play for children with autism with a minimally expressive humanoid robot. 2009 Second International Conferences on Advances in Computer-Human Interactions, 205–211. 10.1109/ACHI.2009.32
    https://doi.org/10.1109/ACHI.2009.32 [Google Scholar]
  41. Sandoval, E. B., Shi, J., Cruz-Sandoval, D., Li, B., Cappuccio, M., & Rosenbaum, S.
    (2021) A prototype of a robot memory game: Exploring the technical limitations of human-robot interaction in a playful context. Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, 195–199. 10.1145/3434074.3447158
    https://doi.org/10.1145/3434074.3447158 [Google Scholar]
  42. Scassellati, B., Boccanfuso, L., Huang, C.-M., Mademtzi, M., Qin, M., Salomons, N., Ventola, P., & Shic, F.
    (2018) Improving social skills in children with asd using a long-term, in-home social robot. Science Robotics, 3 (21). 10.1126/scirobotics.aat7544
    https://doi.org/10.1126/scirobotics.aat7544 [Google Scholar]
  43. Schrepp, M., Hinderks, A., & Thomaschewski, J.
    (2017) Design and evaluation of a short version of the user experience questionnaire (ueq-s). International Journal of Interactive Multimedia and Artificial Intelligence, 4 (6), 103–108. 10.9781/ijimai.2017.09.001
    https://doi.org/10.9781/ijimai.2017.09.001 [Google Scholar]
  44. Shields, N., Synnot, A. J., & Barr, M.
    (2012) Perceived barriers and facilitators to physical activity for children with disability: A systematic review. British journal of sports medicine, 46 (14), 989–997. 10.1136/bjsports‑2011‑090236
    https://doi.org/10.1136/bjsports-2011-090236 [Google Scholar]
  45. Smyth, M. M., & Anderson, H. I.
    (2000) Coping with clumsiness in the school playground: Social and physical play in children with coordination impairments. British Journal of Developmental Psychology, 18 (3), 389–413. 10.1348/026151000165760
    https://doi.org/10.1348/026151000165760 [Google Scholar]
  46. Terry, G., Hayfield, N., Clarke, V., Braun, V., Willig, C., & Rogers, W. S.
    (2017) The sage handbook of qualitative research in psychology. The SAGE Handbook of Qualitative Research in Psychology, 21, 17–36. 10.4135/9781526405555.n2
    https://doi.org/10.4135/9781526405555.n2 [Google Scholar]
  47. Timmerman, E., & Ligthart, M. E.
    (2023) Let’s roll together: Children helping a robot play a dice game. Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 476–480. 10.1145/3568294.3580130
    https://doi.org/10.1145/3568294.3580130 [Google Scholar]
  48. Tipper, B.
    (2011) A dog who i know quite well: Everyday relationships between children and animals. Children’s Geographies, 9 (2), 145–165. 10.1080/14733285.2011.562378
    https://doi.org/10.1080/14733285.2011.562378 [Google Scholar]
  49. Urichuk, L., & Anderson, D.
    (2003) Improving mental health through animal-assisted therapy. Chimo Project Edmonton, Alberta, Canada. www.hipoterapia-sha.sk/fotky14803/Vskumy/AAT-improving-mental-health.pdf
    [Google Scholar]
  50. Van den Heuvel, R., Lexis, M., & De Witte, L. P.
    (2017a) Robot ZORA in rehabilitation and special education for children with severe physical disabilities: A pilot study. International Journal of Rehabilitation Research, 40 (4), 353–359. 10.1097/MRR.0000000000000248
    https://doi.org/10.1097/MRR.0000000000000248 [Google Scholar]
  51. Van den Heuvel, R., Lexis, M., Janssens, R. M., Marti, P., & De Witte, L. P.
    (2017b) Robots supporting play for children with physical disabilities: Exploring the potential of IROMEC. Technology and Disability, 29 (3), 109–120. 10.3233/TAD‑160166
    https://doi.org/10.3233/TAD-160166 [Google Scholar]
  52. Vázquez, M., May, A., Steinfeld, A., & Chen, W.-H.
    (2011) A deceptive robot referee in a multiplayer gaming environment. 2011 international conference on collaboration technologies and systems (CTS), 204–211. 10.1109/CTS.2011.5928688
    https://doi.org/10.1109/CTS.2011.5928688 [Google Scholar]
  53. Wiberg, C., Harbottle, N., Cook, A. M., Adams, K., & Schulmeister, J.
    (2006) Robot assisted play for children with disabilities. 29th Annual RESNA Conference Proceedings. https://era.library.ualberta.ca/items/369ab3d6-f4a2-4476-873b-52758b54bacb
    [Google Scholar]
  54. Wilkinson, P.,
    (1983) Disabled children and integrated play environments. Recreation Research Review, 10 (1), 20–28.
    [Google Scholar]
  55. Yang, B., Xie, X., Habibi, G., & Smith, J. R.
    (2021) Competitive physical human-robot game play. Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, 242–246. 10.1145/3434074.3447168
    https://doi.org/10.1145/3434074.3447168 [Google Scholar]
  56. Yogman, M., Garner, A., Hutchinson, J., Hirsh-Pasek, K., Golinkoff, R. M., on Psychosocial Aspects of Child, C., Health, F.,
    (2018) The power of play: A pediatric role in enhancing development in young children. Pediatrics, 142 (3). 10.1542/peds.2018‑2058
    https://doi.org/10.1542/peds.2018-2058 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error