1887
Volume 25, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Research on language evolution is an established subject area yet permeated by terminological controversies about which topics should be considered pertinent to the field and which not. By consequence, scholars focusing on language evolution struggle in providing precise demarcations of the discipline, where even the very central notions of evolution and language are elusive. We aimed at providing a data-driven characterisation of language evolution as a field of research by relying on quantitative analysis of data drawn from 697 reviews on 255 submissions from the Joint Conference on Language Evolution 2022 (Kanazawa, Japan). Our results delineate a field characterized by a core of main research topics such as iconicity, sign language, multimodality. Despite being explored within the framework of language evolution research, only very recently these topics became popular in linguistics. As a result, language evolution has the potential to emerge as a forefront of linguistic research, bringing innovation to the study of language. We also see the emergence of more recent topics like rhythm, music, and vocal learning. Furthermore, the community identifies cognitive science, primatology, archaeology, palaeoanthropology, and genetics as key areas, encouraging empirical rather than theoretical work. With new themes, models, and methodologies emerging, our results depict an intrinsically multidisciplinary and evolving research field, likely adapting as language itself.

Loading

Article metrics loading...

/content/journals/10.1075/is.00024.har
2024-06-07
2024-06-20
Loading full text...

Full text loading...

References

  1. Bergmann, T. & Dale, R.
    (2016) A Scientometric Analysis Of Evolang: Intersections And Authorships. InS. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Fehér & T. Verhoef (Eds.), The Evolution of Language (pp.79–87). Proceedings of the 11th International Conference.
    [Google Scholar]
  2. Bird, S., Klein, E., & Loper, E.
    (2009) Natural Language Processing with Python: analyzing text with the natural language toolkit. O’ Reilly Media, Inc.
    [Google Scholar]
  3. Cuskley, C., Roberts, S. G., Politzer-Ahles, S., & Verhoef, T.
    (2020) Double-blind reviewing and gender biases at EvoLang conferences: An update. Journal of Language Evolution, 5(1), 92–99. 10.1093/jole/lzz007
    https://doi.org/10.1093/jole/lzz007 [Google Scholar]
  4. Dediu, D., & de Boer, B.
    (2016) Language evolution needs its own journal. Journal of Language Evolution, 1(1), 1–6. 10.1093/jole/lzv001
    https://doi.org/10.1093/jole/lzv001 [Google Scholar]
  5. Fitch, W. T.
    (2017) Empirical approaches to the study of language evolution. Psychonomic Bulletin & Review24(1). 3–33. 10.3758/s13423‑017‑1236‑5
    https://doi.org/10.3758/s13423-017-1236-5 [Google Scholar]
  6. Gibson, K. R., & Tallerman, M.
    (Eds.) (2011) The Oxford Handbook of Language Evolution. Oxford University Press. 10.1093/oxfordhb/9780199541119.001.0001
    https://doi.org/10.1093/oxfordhb/9780199541119.001.0001 [Google Scholar]
  7. Gong, Y., Chen, X., & Zhang, M.
    (2014) Evolutionary linguistics in the past two decades: The 10the international conference on language evolution. Journal of Chinese Linguistics, 421, 499–530.
    [Google Scholar]
  8. Gould, S. J., & Lewontin, R. C.
    (1979) The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B. Biological Sciences, 205(1161), 581–598. 10.1098/rspb.1979.0086
    https://doi.org/10.1098/rspb.1979.0086 [Google Scholar]
  9. Hagberg, A. A., Schult, D. A., & Swart, P. J.
    (2008) Exploring network structure, dynamics, and function using NetworkX. InVaroquaux, G., Vaught, T., & Millman, J. (Eds.), (pp.11–15). Proceedings of the 7th Python in Science Conference (SciPy2008)
    [Google Scholar]
  10. Hartmann, S.
    (2020) Language change and language evolution: Cousins, siblings, twins?Glottotheory, 11(1), 15–39. 10.1515/glot‑2020‑2003
    https://doi.org/10.1515/glot-2020-2003 [Google Scholar]
  11. Haspelmath, M.
    (2016) The evolution (or diachrony) of “language evolution” [Billet]. Diversity Linguistics Comment. https://dlc.hypotheses.org/894
    [Google Scholar]
  12. Jackendoff, R.
    (2010) Your theory of language evolution depends on your theory of language. InLarson, R. K., Déprez, V. & Yamakido, H. (eds.), The evolution of human language: Biolinguistic perspectives, 63–72. Cambridge: Cambridge University Press. 10.1017/CBO9780511817755.004
    https://doi.org/10.1017/CBO9780511817755.004 [Google Scholar]
  13. Landis, J. R., & Koch, G. G.
    (1977) The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159–174. 10.2307/2529310
    https://doi.org/10.2307/2529310 [Google Scholar]
  14. Lewontin, R. C.
    (1998) The evolution of cognition: Questions we will never answer. InMethods, models, and conceptual issues: An invitation to cognitive science, Vol. 4. (pp.106–132). The MIT Press.
    [Google Scholar]
  15. Mendívil-Giró, J. L.
    (2019) Did language evolve through language change? On language change, language evolution and grammaticalization theory. Glossa: A journal of general linguistics, 4(1), 124. 10.5334/gjgl.895
    https://doi.org/10.5334/gjgl.895 [Google Scholar]
  16. Miller, G. A.
    (2003) The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 71, 141–144. 10.1016/S1364‑6613(03)00029‑9
    https://doi.org/10.1016/S1364-6613(03)00029-9 [Google Scholar]
  17. Porter, M. F.
    (1980) An algorithm for suffix stripping. Program, 14(3), 130–137. 10.1108/eb046814
    https://doi.org/10.1108/eb046814 [Google Scholar]
  18. Ravignani, A., Asano, R., Valente, D., Ferretti, F., Hartmann, S., Hayashi, M., Jadoul, Y., Martins, M., Oseki, Y., Rodrigues, E. D., Vasileva, O., & Wacewicz, S.
    (Eds.) (2022) The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE). The Joint Conference on Language Evolution (JCoLE). 10.17617/2.3398549
    https://doi.org/10.17617/2.3398549 [Google Scholar]
  19. Scott-Phillips, T. C., & Kirby, S.
    (2010) Language evolution in the laboratory. Trends in Cognitive Sciences, 14(9), 411–417. 10.1016/j.tics.2010.06.006
    https://doi.org/10.1016/j.tics.2010.06.006 [Google Scholar]
  20. Silge, J. & Robinson, D.
    (2017) Text mining with R. A Tidy approach. O’Reilly.
    [Google Scholar]
  21. Wacewicz, S., Żywiczyński, P., Hartmann, S., Pleyer, M., & Benítez-Burraco, A.
    (2020) Language in Language Evolution Research: Biolinguistics, 141, 59–101. 10.5964/bioling.9157
    https://doi.org/10.5964/bioling.9157 [Google Scholar]
  22. Wacewicz, S., Sibierska, M., Placiński, M., Szczepańska, A., Poniewierska, A., Ng, Y. Y., & Żywiczyński, P.
    (2023) The scientometric landscape of Evolang: A comprehensive database of the Evolang conference. Journal of Language Evolution. 10.1093/jole/lzad003
    https://doi.org/10.1093/jole/lzad003 [Google Scholar]
  23. Żywiczyński, P.
    (2018) Language Origins: From Mythology to Science. Peter Lang. 10.3726/b14208
    https://doi.org/10.3726/b14208 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.00024.har
Loading
/content/journals/10.1075/is.00024.har
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error