Volume 19, Issue 1-2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes



Language and speech depend on a relatively well defined neural circuitry, located predominantly in the left hemisphere. In this article, I discuss the origin of the speech circuit in early humans, as an expansion of an auditory-vocal articulatory network that took place after the last common ancestor with the chimpanzee. I will attempt to converge this perspective with aspects of the Mirror System Hypothesis, particularly those related to the emergence of a meaningful grammar in human communication. Basically, the strengthening of auditory-vocal connectivity via the arcuate fasciculus and related tracts generated an expansion of working memory capacity for vocalizations, that was key for learning complex utterances. This process was concomitant with the development of a robust interface with visual working memory, both in the dorsal and ventral streams of auditory and visual processing. This enabled the bidirectional translation of sequential codes into hierarchical visual representations, through the development of a multimodal interface between both systems.


Article metrics loading...

Loading full text...

Full text loading...


  1. Aboitiz, F.
    (2012) Gestures, vocalizations, and memory in language origins. Frontiers in Evolutionary Neuroscience4, 2.
    [Google Scholar]
  2. (2017) A Brain for Speech. A View from Evolutionary Neuroanatomy. London: Palgrave Macmillan.10.1057/978‑1‑137‑54060‑7
    https://doi.org/10.1057/978-1-137-54060-7 [Google Scholar]
  3. Aboitiz, F., & García, R.
    (1997) The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Research Reviews25, 381–396.10.1016/S0165‑0173(97)00053‑2
    https://doi.org/10.1016/S0165-0173(97)00053-2 [Google Scholar]
  4. Arbib, M. A.
    (2012) How The Brain Got Language. The Mirror System Hypothesis. Oxford: Oxford University Press.10.1093/acprof:osobl/9780199896684.001.0001
    https://doi.org/10.1093/acprof:osobl/9780199896684.001.0001 [Google Scholar]
  5. (2016) Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons. Psychonomics Bulletin Review24, 142–150.10.3758/s13423‑016‑1098‑2
    https://doi.org/10.3758/s13423-016-1098-2 [Google Scholar]
  6. (2017) Towards a computational comparative neuroprimatology: framing the language-ready brain. Physics of Life Reviews, In press.
    [Google Scholar]
  7. Arbib, M. A., & Caplan, D.
    (1979) Neurolinguistics must be computational. Behavioral and Brain Sciences2, 449–483.10.1017/S0140525X0006369X
    https://doi.org/10.1017/S0140525X0006369X [Google Scholar]
  8. Baddeley, A.
    (2007) Working Memory, Thought and Action. Oxford: Oxford University Press.10.1093/acprof:oso/9780198528012.001.0001
    https://doi.org/10.1093/acprof:oso/9780198528012.001.0001 [Google Scholar]
  9. (2012) Working memory: theories, models and controversies. Annual Review of Psychology63, 1–29.10.1146/annurev‑psych‑120710‑100422
    https://doi.org/10.1146/annurev-psych-120710-100422 [Google Scholar]
  10. Beauchamp, M. S.
    (2015) The social mysteries of the superior temporal sulcus. Trends in Cognitive Sciences19, 489–490.10.1016/j.tics.2015.07.002
    https://doi.org/10.1016/j.tics.2015.07.002 [Google Scholar]
  11. Binder, J. R., & Desai, R. H.
    (2011) The neurobiology of semantic memory. Trends in Cognitive Sciences15, 527–536.10.1016/j.tics.2011.10.001
    https://doi.org/10.1016/j.tics.2011.10.001 [Google Scholar]
  12. Brennan, J., Nir, Y., Hasson, U., Malach, R., Heeger, D. J., & Pylkkänen, L.
    (2012) Syntactic structure building in the anterior temporal lobe during natural story listening. Brain and Language120, 163–173.10.1016/j.bandl.2010.04.002
    https://doi.org/10.1016/j.bandl.2010.04.002 [Google Scholar]
  13. Caplan, D., & Waters, G. S.
    (1999) Verbal working memory and sentence comprehension. Behavioral and Brain Sciences22, 77–94.10.1017/S0140525X99001788
    https://doi.org/10.1017/S0140525X99001788 [Google Scholar]
  14. Catani, M., & Bambini, V.
    (2014) A model for Social Communication And Language Evolution and Development (SCALED). Current Opinion in Neurobiology28, 165–171.10.1016/j.conb.2014.07.018
    https://doi.org/10.1016/j.conb.2014.07.018 [Google Scholar]
  15. Colombo, M., D’Amato, M. R., Rodman, H. R., & Gross, C. G.
    (1990) Auditory association cortex lesions impair auditory short-term memory in monkeys. Science247, 336–338.10.1126/science.2296723
    https://doi.org/10.1126/science.2296723 [Google Scholar]
  16. Coudé, G., Ferrari, P. F., Rodà, F., Maranesi, M., Borelli, E., Veroni, V., Monti, F., Rozzi, S., & Fogassi, L.
    (2011) Neurons controlling voluntary vocalization in the macaque ventral premotor cortex. PLoS One6, e26822.10.1371/journal.pone.0026822
    https://doi.org/10.1371/journal.pone.0026822 [Google Scholar]
  17. Coudé, G. & Ferrari, P. F.
    Reflections on the organization of the cortical motor system and its role in the evolution of communication in primates. Interaction Studies, in press.
    [Google Scholar]
  18. Erickson, L. C., Rauschecker, J. P., & Turkeltaub, P. E.
    (2017) Meta-analytic connectivity modeling of the human superior temporal sulcus. Brain Structure and Function222, 267–285.10.1007/s00429‑016‑1215‑z
    https://doi.org/10.1007/s00429-016-1215-z [Google Scholar]
  19. Friederici, A. D.
    (2011) The brain basis of language processing: from structure to function. Physiological Reviews91, 1357–1392.10.1152/physrev.00006.2011
    https://doi.org/10.1152/physrev.00006.2011 [Google Scholar]
  20. Fritz, J. B., Elhilali, M., Shamma, S. A.
    (2005) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience25, 7623–763510.1523/JNEUROSCI.1318‑05.2005
    https://doi.org/10.1523/JNEUROSCI.1318-05.2005 [Google Scholar]
  21. Fritz, J. B., Malloy, M., Mishkin, M., & Saunders, R. C.
    (2016) Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices. Brain Research1640, 289–98.10.1016/j.brainres.2015.12.012
    https://doi.org/10.1016/j.brainres.2015.12.012 [Google Scholar]
  22. García, R. R., Zamorano, F., & Aboitiz, F.
    (2014) From imitation to meaning: circuit plasticity and the acquisition of a conventionalized semantics. Frontiers in Human Neuroscience8, 605.
    [Google Scholar]
  23. Goldman-Rakic, P. S.
    (1995) Cellular basis of working memory. Neuron14, 477–485.10.1016/0896‑6273(95)90304‑6
    https://doi.org/10.1016/0896-6273(95)90304-6 [Google Scholar]
  24. Griffiths, J. D., Marslen-Wilson, W. D., Stamatakis, E. A., & Tyler, L. K.
    (2013) Functional organization of the neural language system: dorsal and ventral pathways are critical for syntax. Cerebral Cortex23, 139–147.10.1093/cercor/bhr386
    https://doi.org/10.1093/cercor/bhr386 [Google Scholar]
  25. Gu, Z., Kalambogias, J., Yoshioka, S., Han, W., Li, Z., Kawasawa, Y. I., Pochareddy, S., Li, Z., Liu, F., Xu, X., Wijeratne, H. R. S., Ueno, M., Blatz, E., Salomone, J., Kumanogoh, A., Rasin, M. R., Gebelein, B., Weirauch, M. T., Sestan, N., Martin, J. H., & Yoshida, Y.
    (2017) Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science357, 400–404.10.1126/science.aan3721
    https://doi.org/10.1126/science.aan3721 [Google Scholar]
  26. Hage, S. R., & Nieder, A.
    (2016) Dual Neural Network Model for the Evolution of Speech and Language. Trends in Neuroscience39, 813–829.10.1016/j.tins.2016.10.006
    https://doi.org/10.1016/j.tins.2016.10.006 [Google Scholar]
  27. Herculano-Houzel, S., Kaas, J. H., & de Oliveira-Souza, R.
    (2016) Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. Journal of Comparative Neurology524, 448–455.10.1002/cne.23792
    https://doi.org/10.1002/cne.23792 [Google Scholar]
  28. Hickok, G.
    (2017) A cortical circuit for voluntary laryngeal control: Implications for the evolution language. Psychonomics Bulletin Review24, 56–63.10.3758/s13423‑016‑1100‑z
    https://doi.org/10.3758/s13423-016-1100-z [Google Scholar]
  29. Hickok, G., Houde, J., & Rong, F.
    (2011) Sensorimotor integration in speech processing: computational basis and neural organization. Neuron69, 407–422.10.1016/j.neuron.2011.01.019
    https://doi.org/10.1016/j.neuron.2011.01.019 [Google Scholar]
  30. Kumar, V., Croxson, P. L., & Simonyan, K.
    (2016) Structural organization of the laryngeal motor cortical network and its implication for evolution of speech production. Journal of Neuroscience36, 4170–4181.10.1523/JNEUROSCI.3914‑15.2016
    https://doi.org/10.1523/JNEUROSCI.3914-15.2016 [Google Scholar]
  31. Lameira, A. R., Maddieson, I., & Zuberbühler, K.
    (2014) Primate feedstock for the evolution of consonants. Trends in Cognitive Sciences18, 60–62.10.1016/j.tics.2013.10.013
    https://doi.org/10.1016/j.tics.2013.10.013 [Google Scholar]
  32. Leighton, G. M.
    (2017) Cooperative breeding influences the number and type of vocalizations in avan lineages. Proceedings of the Royal Society B 284 (1868), pii, 20171508.
    [Google Scholar]
  33. Makuuchi, M., & Friederici, A. D.
    (2013) Hierarchical functional connectivity between the core language system and the working memory system. Cortex49, 2416–2423.10.1016/j.cortex.2013.01.007
    https://doi.org/10.1016/j.cortex.2013.01.007 [Google Scholar]
  34. Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., Rizzolatti, G., & Orban, G. A.
    (2011) Action observation circuits in the macaque monkey cortex. Journal of Neuroscience31, 3743–3756.10.1523/JNEUROSCI.4803‑10.2011
    https://doi.org/10.1523/JNEUROSCI.4803-10.2011 [Google Scholar]
  35. Nelson, M. J., El Karoui, I., Giber, K., Yang, X., Cohen, L., Koopman, H., Cash, S. S., Naccache, L., Hale, J. T., Pallier, C., & Dehaene, S.
    (2017) Neurophysiological dynamics of phrase-structure building during sentence processing. Proceedings of the National Academy of Science U.S.A. 114, E3669–E367810.1073/pnas.1701590114
    https://doi.org/10.1073/pnas.1701590114 [Google Scholar]
  36. Neubert, F. X., Mars, R. B., Thomas, A. G., Sallet, J., & Rushworth, M. F.
    (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron81, 700–713.10.1016/j.neuron.2013.11.012
    https://doi.org/10.1016/j.neuron.2013.11.012 [Google Scholar]
  37. Okada, K., Matchin, W., & Hickok, G.
    (2018) Neural evidence for predictive coding in auditory cortex during speech production. Psychonomics Bulletin Reviews25, 423–430.10.3758/s13423‑017‑1284‑x
    https://doi.org/10.3758/s13423-017-1284-x [Google Scholar]
  38. Petrides, M.
    (2014) Neuroanatomy of Language Regions of the Human Brain. New York: Academic Press.
    [Google Scholar]
  39. Plakke, B., & Romanski, L. M.
    (2016) Neural circuits in auditory and audiovisual memory. Brain Research1640, 278–288.10.1016/j.brainres.2015.11.042
    https://doi.org/10.1016/j.brainres.2015.11.042 [Google Scholar]
  40. Putt, S. S., Wijeakumar, S., Franciscus, R. G., Spencer, J. P.
    (2017) The functional brain networks that underlie Early Stone Age tool manufacture. Nature Human Behaviour, 1, 1–8.10.1038/s41562‑017‑0102
    https://doi.org/10.1038/s41562-017-0102 [Google Scholar]
  41. Rauschecker, J. P.
    (2012) Ventral and dorsal streams in the evolution of speech and language. Frontiers in Evolutionary Neuroscience4, 7.
    [Google Scholar]
  42. (2017) Where, When, and How: Are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition. Cortex [Epub ahead of print]
    [Google Scholar]
  43. Rilling, J. K.
    (2014) Comparative primate neurobiology and the evolution of brain language systems. Current Opinion in Neurobiology28, 10–14.10.1016/j.conb.2014.04.002
    https://doi.org/10.1016/j.conb.2014.04.002 [Google Scholar]
  44. Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., & Preuss, T. M.
    (2012) Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience3, 11.
    [Google Scholar]
  45. Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E.
    (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience11, 426–428.10.1038/nn2072
    https://doi.org/10.1038/nn2072 [Google Scholar]
  46. Rizzolatti, G., & Arbib, M. A.
    (1998) Language within our grasp. Trends in Neuroscience21, 188–194.10.1016/S0166‑2236(98)01260‑0
    https://doi.org/10.1016/S0166-2236(98)01260-0 [Google Scholar]
  47. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P.
    (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience2, 1131–1136.10.1038/16056
    https://doi.org/10.1038/16056 [Google Scholar]
  48. Romanski, L. M.
    (2007) Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. Cerebral Cortex17, Suppl1: i61–i69.10.1093/cercor/bhm099
    https://doi.org/10.1093/cercor/bhm099 [Google Scholar]
  49. Schomers, M. R., Garagnani, M., & Pulvermüller, F.
    (2017) Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex. Journal of Neuroscience37, 3045–3055.10.1523/JNEUROSCI.2693‑16.2017
    https://doi.org/10.1523/JNEUROSCI.2693-16.2017 [Google Scholar]
  50. Scott, B. H., Mishkin, M., & Yin, P.
    (2012) Monkeys have a limited form of short-term memory in audition. Proceedings of the National Academy of Science U.S.A. 109, 12237–12241.10.1073/pnas.1209685109
    https://doi.org/10.1073/pnas.1209685109 [Google Scholar]
  51. (2014) Neural correlates of auditory short-term memory in rostral superior temporal cortex. Current Biology24, 2767–2775.10.1016/j.cub.2014.10.004
    https://doi.org/10.1016/j.cub.2014.10.004 [Google Scholar]
  52. Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., Hoymann, G., Rossano, F., de Ruiter, J. P., Yoon, K. E., & Levinson, S. C.
    (2009) Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Science U.S.A. 106, 10587–10592.10.1073/pnas.0903616106
    https://doi.org/10.1073/pnas.0903616106 [Google Scholar]
  53. Skeide, M. A., & Friederici, A. D.
    (2016) The ontogeny of the cortical language network. Nature Reviews Neuroscience17, 323–332.10.1038/nrn.2016.23
    https://doi.org/10.1038/nrn.2016.23 [Google Scholar]
  54. Tremblay, P., & Dick, A. S.
    (2016), Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language162, 60–71.10.1016/j.bandl.2016.08.004
    https://doi.org/10.1016/j.bandl.2016.08.004 [Google Scholar]
  55. Tyler, L. K., Shafto, M. A., Randall, B., Wright, P., Marslen-Wilson, W. D., & Stamatakis, E. A.
    (2010) Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cerebral Cortex20, 352–364.10.1093/cercor/bhp105
    https://doi.org/10.1093/cercor/bhp105 [Google Scholar]
  56. Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., Papoutsi, M., & Stamatakis, E. A.
    (2011) Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain134, 415–431.10.1093/brain/awq369
    https://doi.org/10.1093/brain/awq369 [Google Scholar]
  57. Wilson, B., & Petkov, P. I.
    From evolutionarily conesrved frontal regions for sequence processing to human innovations in syntax. Interaction Studies, in press, this issue.
    [Google Scholar]
  58. Yamamoto, K., & Sakai, K. L.
    (2016) The dorsal rather than ventral pathway better reflects individual syntactic abilities in second language. Frontiers in Human Neuroscience10, 295.10.3389/fnhum.2016.00295
    https://doi.org/10.3389/fnhum.2016.00295 [Google Scholar]
  59. Yeatman, J. D., Dougherty, R. F., Rykhlevskaia, E., Sherbondy, A. J., Deutsch, G. K., Wandell, B. A., & Ben-Shachar, M.
    (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. Journal of Cognitive Neuroscience23, 3304–3317.10.1162/jocn_a_00061
    https://doi.org/10.1162/jocn_a_00061 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): arcuate fasciculus; Broca’s area; laryngeal cortex; vocal learning; working memory

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error