1887
Volume 19, Issue 1-2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Language- and music-readiness are demonstrated as related within comparative neuroprimatology by elaborating three hypotheses concerning music-readiness (MR): The (musicological) rhythm-first hypothesis (MR-1), the combinatoriality hypothesis (MR-2), and the socio-affect-cohesion hypothesis (MR-3). MR-1 states that rhythm precedes evolutionarily melody and tonality. MR-2 states that complex imitation and fractionation within the expanding spiral of the mirror system/complex imitation hypothesis (MS/CIH) lead to the combinatorial capacities of rhythm necessary for building up a musical lexicon and complex structures; and rhythm, in connection with repetition and variation, scaffolds both musical form and content. MR-3 states that music’s main evolutionary function is to self-induce affective states in individuals to cope with distress; rhythm, in particular isochrony, provides a temporal framework to support movement synchronization, inducing shared affective states in group members, which in turn enhances group cohesion. This document reviews current behavioural and neurocognitive research relevant to the comparative neuroprimatology of music-readiness. It further proposes to extend MS/CIH through the evolution of the relationship of the language- and music-ready brain, by comparing “affective rhythm” and prosody – i.e. by comparatively approaching the language- and music-emotion link in neuroprimatology.

Loading

Article metrics loading...

/content/journals/10.1075/is.17035.sei
2018-09-17
2025-04-30
Loading full text...

Full text loading...

References

  1. Ackermann, H., Hage, S. R., & Ziegler, W.
    (2014) Brain mechanisms of acoustic communication in humans and nonhumans primates: An evolutionary perspective. Behavioral and Brain Sciences, 37, 529–604.10.1017/S0140525X13003099
    https://doi.org/10.1017/S0140525X13003099 [Google Scholar]
  2. Arbib, M. A.
    (2016) Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain. Physics of Life Reviews, 16, 1–54.10.1016/j.plrev.2015.09.003
    https://doi.org/10.1016/j.plrev.2015.09.003 [Google Scholar]
  3. Arbib, M. A., & Fellous, J. -M.
    (2004) Emotions: from brain to robot. Trends in Cognitive Sciences, 8(12), 554–561.10.1016/j.tics.2004.10.004
    https://doi.org/10.1016/j.tics.2004.10.004 [Google Scholar]
  4. Armony, J. L., & LeDoux, J. E.
    (2010) Emotional responses to auditory stimuli. InA. Rees & A. R. Palmer (Eds.), The Oxford Handbook of Auditory Science: The Auditory Brain, Vol. 2 (pp.479–505). Oxford: Oxford University Press.
    [Google Scholar]
  5. Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A., & Korenberg, J. R.
    (1999) Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends in Neurosciences, 22(5), 197–207.10.1016/S0166‑2236(99)01397‑1
    https://doi.org/10.1016/S0166-2236(99)01397-1 [Google Scholar]
  6. Brown, S.
    (2017) A Joint Prosodic Origin of Language and Music. Frontiers in Psychology, 8(1894).10.3389/fpsyg.2017.01894
    https://doi.org/10.3389/fpsyg.2017.01894 [Google Scholar]
  7. Cross, I.
    (2014) Music and communication in music psychology. Psychology of Music, 42(6), 809–819.10.1177/0305735614543968
    https://doi.org/10.1177/0305735614543968 [Google Scholar]
  8. Ferrari, P. F., Gerbella, M., Coudé, G., & Rozzi, S.
    (2017) Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience, 358, 300–315.10.1016/j.neuroscience.2017.06.052
    https://doi.org/10.1016/j.neuroscience.2017.06.052 [Google Scholar]
  9. Filippi, P.
    (2016) Emotional and Interactional Prosody across Animal Communication Systems: A Comparative Approach to the Emergence of Language. Frontiers in Psychology, 7(1393).10.3389/fpsyg.2016.01393
    https://doi.org/10.3389/fpsyg.2016.01393 [Google Scholar]
  10. Fitch, W. T.
    (2015) The Biology and Evolution of Musical Rhythm: An Update. InI. Toivonen, P. Csúri, & E. van der Zee (Eds.), Structures in the Mind: Essays on Language, Music, and Cognition in Honor of Ray Jackendoff (pp.293–323). Cambridge, MA: The MIT Press.
    [Google Scholar]
  11. Frühholz, S., Trost, W., & Kotz, S. A.
    (2016) The sound of emotions – Towards a unifying neural network perspective of affective sound processing. Neuroscience & Biobehavioral Reviews, 68, 96–110.10.1016/j.neubiorev.2016.05.002
    https://doi.org/10.1016/j.neubiorev.2016.05.002 [Google Scholar]
  12. Honing, H.
    (Ed.) (2018) The Origins of Musicality. Cambridge, MA: The MIT Press
    [Google Scholar]
  13. Jantzen, M. G., Large, E. W., & Magne, C.
    (Eds.) (2016) Overlap of Neural Systems for Processing Language and Music. s. l.: Frontiers in Psychology / Frontiers in Neuroscience.10.3389/978‑2‑88919‑911‑2
    https://doi.org/10.3389/978-2-88919-911-2 [Google Scholar]
  14. Juslin, P. J., Liljeström, S., Västfjäll, D., & Lundquist, L. -O.
    (2010) How does music evoke emotions? Exploring the underlying mechanisms. InP. Juslin & J. A. Sloboda (Eds.), Music and Emotion: Theory, Research, Applications (pp.605–642). Oxford: Oxford University Press.
    [Google Scholar]
  15. Killin, A.
    (2017) Where did language come from? Connecting sign, song, and speech in hominin evolution. Biological & Philosophy.10.1007/s10539‑017‑9607‑x
    https://doi.org/10.1007/s10539-017-9607-x [Google Scholar]
  16. Kirschner, S., & Tomasello, M.
    (2010) Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31, 354–364.10.1016/j.evolhumbehav.2010.04.004
    https://doi.org/10.1016/j.evolhumbehav.2010.04.004 [Google Scholar]
  17. Koelsch, S.
    (2014) Brain correlates of music-evoked emotions. Nature Review Neuroscience, 15(3), 170–180.10.1038/nrn3666
    https://doi.org/10.1038/nrn3666 [Google Scholar]
  18. Lawergren, B.
    (1988) The Origin of Musical Instruments and Sounds. Anthropos, 83(1/3), 31–45.
    [Google Scholar]
  19. Lewis, J.
    (2013) A cross-cultural perspective on the significance of music and dance to culture and society. InM. A. Arbib (Ed.), Language, Music, and the Brain: A Mysterious Relationship (pp.45–65). Cambridge, MA: The MIT Press.
    [Google Scholar]
  20. Margulis, E. H.
    (2013) Repetition and Emotive Communication in Music Versus Speech. Frontiers in Psychology, 4, 167.10.3389/fpsyg.2013.00167
    https://doi.org/10.3389/fpsyg.2013.00167 [Google Scholar]
  21. Maynard Smith, J., & Harper, D.
    (2003) Animal Signals. Oxford: Oxford University Press.
    [Google Scholar]
  22. Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M., & Fitch, W. T.
    (2015) Finding the beat: a neural perspective across humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140093.10.1098/rstb.2014.0093
    https://doi.org/10.1098/rstb.2014.0093 [Google Scholar]
  23. Merchant, H., & Honing, H.
    (2014) Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 7(274).10.3389/fnins.2013.00274
    https://doi.org/10.3389/fnins.2013.00274 [Google Scholar]
  24. Merker, B.
    (2015) Seven Theses on the Biology of Music and Language. Signata, 6, 195–215.10.4000/signata.1081
    https://doi.org/10.4000/signata.1081 [Google Scholar]
  25. Merker, B. H.
    (2000) The birth of music in synchronous chorusing at the hominid-chimpanzee split. Paper presented at theInternational Conference on Music Perception and Cognition 2000.
    [Google Scholar]
  26. Montagu, J.
    (2017) How Music and Instruments Began: A Brief Overview of the Origin and Entire Development of Music, from Its Earliest Stages. Frontiers in Sociology, 2, 8.10.3389/fsoc.2017.00008
    https://doi.org/10.3389/fsoc.2017.00008 [Google Scholar]
  27. Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H.
    (2015) Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition. Neuron, 88, 1281–1296.10.1016/j.neuron.2015.11.035
    https://doi.org/10.1016/j.neuron.2015.11.035 [Google Scholar]
  28. Patel, A. D.
    (2014) The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong?PLOS Biology, 12(3), e1001821.10.1371/journal.pbio.1001821
    https://doi.org/10.1371/journal.pbio.1001821 [Google Scholar]
  29. Powers, H.
    (2003) Rhythm. InD. M. Randel (Ed.), The Harvard Dictionary of Music. Fourth Edition (pp.723–729). Cambridge, MA: Belnap Press.
    [Google Scholar]
  30. Rauschecker, J. P.
    (2013) Brain networks for the encoding of emotions in communication sounds of human and nonhuman primates. InE. Altenmüller, S. Schmidt, & E. Zimmermann (Eds.), Evolution of Emotional Communication: From Sounds in Nonhuman Mammals to Speech and Music in Man (pp.49–62). Oxford: Oxford University Press.10.1093/acprof:oso/9780199583560.003.0003
    https://doi.org/10.1093/acprof:oso/9780199583560.003.0003 [Google Scholar]
  31. Rauschecker, J. P., & Scott, S. K.
    (2016) Chapter 24 – Pathways and Streams in the Auditory Cortex: An Update on How Work in Nonhuman Primates has Contributed to Our Understanding of Human Speech Processing A2 – Hickok, Gregory. InS. L. Small (Ed.), Neurobiology of Language (pp.287–298). San Diego: Academic Press.10.1016/B978‑0‑12‑407794‑2.00024‑9
    https://doi.org/10.1016/B978-0-12-407794-2.00024-9 [Google Scholar]
  32. Ravignani, A., Honing, H., & Kotz, S. A.
    (Eds.) (2017) The Evolution of Rhythm Cognition: Timing in Music and Speech. s. l.: Frontiers in Human Neuroscience.10.3389/fnhum.2017.00303
    https://doi.org/10.3389/fnhum.2017.00303 [Google Scholar]
  33. Remedios, R., Logothetis, N. K., & Kayser, C.
    (2009) Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. PNAS, 106(2), 1810–1815.
    [Google Scholar]
  34. Sammler, D., Grosbras, M. -H., Anwander, A., Bestelmeyer, P. E. G., & Belin, P.
    (2015) Dorsal and Ventral Pathways for Prosody. Current Biology, 25, 3079–3085.10.1016/j.cub.2015.10.009
    https://doi.org/10.1016/j.cub.2015.10.009 [Google Scholar]
  35. Schaefer, H. -E.
    (2017) Music-Evoked Emotions – Current Studies. Frontiers in Neuroscience, 11(600).10.3389/fnins.2017.00600
    https://doi.org/10.3389/fnins.2017.00600 [Google Scholar]
  36. Schäfer, T., Sedlmaier, P., Städtler, C., & Huron, D.
    (2013) The Psychological Functions of Music Listening. Frontiers in Psychology, 4(511), 1–33.
    [Google Scholar]
  37. Scharff, C., Friederici, A. D., & Petrides, M.
    (Eds.) (2013) Neurobiology of Human Language and Its Evolution: Primate and Non-Primate Perspectives. s. l.: Frontiers in Evolutionary Neuroscience.10.3389/978‑2‑88919‑111‑6.
    https://doi.org/10.3389/978-2-88919-111-6 [Google Scholar]
  38. Schulkin, J., & Raglan, G. B.
    (2014) The evolution of music and human social capability. Frontiers in Neuroscience, 8, 292.10.3389/fnins.2014.00292
    https://doi.org/10.3389/fnins.2014.00292 [Google Scholar]
  39. Seifert, U., Verschure, P. F. M. J., Arbib, M. A., Cohen, A. J., Fogassi, L., Fritz, T., … Scherer, K.
    (2013) Semantics of Internal and External Worlds. InM. A. Arbib (Ed.), Language, Music, and the Brain: A Mysterious Relationship, Strüngmann Forum Reports, vol. 10. (pp.203–229) Cambridge, MA: MIT Press.
    [Google Scholar]
  40. Tarr, B., Launay, J., & Dunbar, R. I. M.
    (2014) Music and social bonding: “self-other” merging and neurohormonal mechanisms. Frontiers in Psychology, 5, 1096.10.3389/fpsyg.2014.01096
    https://doi.org/10.3389/fpsyg.2014.01096 [Google Scholar]
  41. Toussaint, G. T.
    (2013) The Geometry of Musical Rhythm: What Makes a “Good” Rhythm Good?Boca Raton: CRC Press.
    [Google Scholar]
  42. Trost, W. J., Labbé, C., & Grandjean, D.
    (2017) Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, 96, 96–110.10.1016/j.neuropsychologia.2017.01.004
    https://doi.org/10.1016/j.neuropsychologia.2017.01.004 [Google Scholar]
  43. Vuust, P., & Kringelbach, M. L.
    (2010) The Pleasure of Music. InM. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the Brain (pp.255–269). Oxford: Oxford University Press.
    [Google Scholar]
  44. Wang, T.
    (2015) A hypothesis on the biological origins and social evolution of music and dance. Frontiers in Neuroscience, 9(30), 1–10.
    [Google Scholar]
  45. Wallaschek, R.
    (1891) On the Origin of Music. Mind, 16(63), 375–386.10.1093/mind/os‑XVI.63.375
    https://doi.org/10.1093/mind/os-XVI.63.375 [Google Scholar]
/content/journals/10.1075/is.17035.sei
Loading
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error