1887
Volume 19, Issue 1-2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

A theory of evolving the language-ready brain requires a theory of what it is that evolved. We offer the TCG (Template Construction Grammar) model of comprehension and production of utterances to exhibit hypotheses on how utterances may link to “what language is about.” A key subsystem of TCG is the SemRep system for semantic representation of a visual scene. We offer an account of how it may have evolved as an expansion of the ventral pathway supporting the planning of manual actions, complemented by a dorsal pathway for articulation. The Mirror System Hypothesis (MSH) claims that early had protolanguage but not language and that cultural evolution yielded the social structures within which children could indeed acquire language. The article poses the challenge of understanding how a brain system could be innately specified that could develop into a TCG-like form, posing a range of questions for future research.

Loading

Article metrics loading...

/content/journals/10.1075/is.17036.arb
2018-09-17
2025-04-21
Loading full text...

Full text loading...

References

  1. Aboitiz, F.
    (2012) Gestures, vocalizations and memory in language origins. Frontiers in Evolutionary Neuroscience, 4(2).10.3389/fnevo.2012.00002.
    https://doi.org/10.3389/fnevo.2012.00002 [Google Scholar]
  2. (2013) How did vocal behavior “take over” the gestural communication system?Language and Cognition, 5, 167–176.10.1515/langcog‑2013‑0011
    https://doi.org/10.1515/langcog-2013-0011 [Google Scholar]
  3. Arbib, M. A.
    (2012) How the Brain Got Language: The Mirror System Hypothesis. New York & Oxford: Oxford University Press.10.1093/acprof:osobl/9780199896684.001.0001
    https://doi.org/10.1093/acprof:osobl/9780199896684.001.0001 [Google Scholar]
  4. (2013) Complex Imitation and the Language-Ready Brain. Language and Cognition, 5(2–3), 273–312.10.1515/langcog‑2013‑0020
    https://doi.org/10.1515/langcog-2013-0020 [Google Scholar]
  5. (2016) Towards a Computational Comparative Neuroprimatology: Framing the Language-Ready Brain. Physics of Life Reviews, 16, 1–54.10.1016/j.plrev.2015.09.003
    https://doi.org/10.1016/j.plrev.2015.09.003 [Google Scholar]
  6. (2017) Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. Journal of Neurolinguistics, 43, Part B, 228–253.10.1016/j.jneuroling.2016.12.003.
    https://doi.org/10.1016/j.jneuroling.2016.12.003 [Google Scholar]
  7. (2018) Computational challenges of evolving the language-ready brain: 1. From Manual Action to Protosign. Interaction Studies, 19(1–2), 7–21.10.1075/is.17029.arb
    https://doi.org/10.1075/is.17029.arb [Google Scholar]
  8. Arbib, M. A. & Bonaiuto, J. J.
    (eds) (2016) From Neuron to Cognition via Computational Neuroscience. Cambridge, MA: The MIT Press.
    [Google Scholar]
  9. Arbib, M. A. & Caplan, D.
    (1979) Neurolinguistics must be Computational. Behavioral and Brain Sciences, 2, 449–483.10.1017/S0140525X0006369X
    https://doi.org/10.1017/S0140525X0006369X [Google Scholar]
  10. Arbib, M. A., Ganesh, V. & Gasser, B.
    (2014a) Dyadic Brain Modeling, Ontogenetic Ritualization of Gesture in Apes, and the Contributions of Primate Mirror Neuron Systems. Phil Trans Roy Soc B, 369 (1644), 20130414.10.1098/rstb.2013.0414
    https://doi.org/10.1098/rstb.2013.0414 [Google Scholar]
  11. Arbib, M. A., Gasser, B. & Barrès, V.
    (2014b) Language is handy but is it embodied?Neuropsychologia, 55, 57–70.10.1016/j.neuropsychologia.2013.11.004
    https://doi.org/10.1016/j.neuropsychologia.2013.11.004 [Google Scholar]
  12. Arbib, M. A. & Lee, J. Y.
    (2008) Describing visual scenes: Towards a neurolinguistics based on construction grammar. Brain Research, 1225, 146–162.10.1016/j.brainres.2008.04.075
    https://doi.org/10.1016/j.brainres.2008.04.075 [Google Scholar]
  13. (2009) Template Construction Grammar and the Description of Visual Scenes. The Neurobiology of Language Conference, Chicago.
    [Google Scholar]
  14. Arbib, M. A. & Liaw, J. -S.
    (1995) Sensorimotor Transformations in the Worlds of Frogs and Robots. Artificial Intelligence, 72, 53–79.10.1016/0004‑3702(94)00055‑6
    https://doi.org/10.1016/0004-3702(94)00055-6 [Google Scholar]
  15. Baker, M.
    (2001) The Atoms of Language: The Mind’s Hidden Rules of Grammar. New York: Basic Books.
    [Google Scholar]
  16. Barrès, V. & Arbib, M. A.
    (2018a) From Gaze Patterns to Utterances: Modeling the Dynamics of Visual Scene Description. Cognitive Science, In preparation.
    [Google Scholar]
  17. (2018b) SALVIA: A Neuro-Cognitive Model of Normal and Agrammatic Language Comprehension. Brain and Language, In preparation.
    [Google Scholar]
  18. Barrès, V. & Lee, J. Y.
    (2014) Template Construction Grammar: From Visual Scene Description to Language Comprehension and Agrammatism. Neuroinformatics, 12(1), 181–208.10.1007/s12021‑013‑9197‑y
    https://doi.org/10.1007/s12021-013-9197-y [Google Scholar]
  19. Behrmann, M. & Plaut, D. C.
    (2013) Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17(5), 210–219.10.1016/j.tics.2013.03.007
    https://doi.org/10.1016/j.tics.2013.03.007 [Google Scholar]
  20. Berwick, R. C. & Chomsky, N.
    (2016) Why only us: Language and Evolution, Cambridge, MA: The MIT Press.
    [Google Scholar]
  21. Bickerton, D.
    (1995) Language and Human Behavior. Seattle: University of Washington Press.
    [Google Scholar]
  22. (2009) Adam’s Tongue. How Humans Made Language, How Language Made Humans. New York: Hill & Wang.
    [Google Scholar]
  23. Bornkessel-Schlesewsky, I. & Schlesewsky, M.
    (2013) Reconciling time, space and function: A new dorsal–ventral stream model of sentence comprehension. Brain Lang, 125(1), 60–76.10.1016/j.bandl.2013.01.010
    https://doi.org/10.1016/j.bandl.2013.01.010 [Google Scholar]
  24. Cangelosi, A. & Parisi, D.
    (eds) (2002) Simulating the Evolution of Language. London: Springer.10.1007/978‑1‑4471‑0663‑0
    https://doi.org/10.1007/978-1-4471-0663-0 [Google Scholar]
  25. Caramazza, A. & Zurif, E. B.
    (1976) Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia. Brain and Language, 3(4), 572–582.10.1016/0093‑934X(76)90048‑1
    https://doi.org/10.1016/0093-934X(76)90048-1 [Google Scholar]
  26. Chang, F.
    (2015) The role of learning in theories of English and Japanese sentence processing, inNakyama, M. (ed), Handbook of Japanese psycholinguistics. Boston: De Gruyter Mouton, 353–385.10.1515/9781614511212‑019
    https://doi.org/10.1515/9781614511212-019 [Google Scholar]
  27. Colagé, I.
    (2016) The Cultural Evolution of Language and Brain: Comment on “Towards a computational comparative neuroprimatology: Framing the language-ready brain” by M.A. Arbib. Physics of Life Reviews, 16, 61–62.10.1016/j.plrev.2016.01.013
    https://doi.org/10.1016/j.plrev.2016.01.013 [Google Scholar]
  28. Dehaene, S. & Cohen, L.
    (2011) The unique role of the visual word form area in reading. TRENDS in Cognitive Sciences, 15(6), 254–262.10.1016/j.tics.2011.04.003
    https://doi.org/10.1016/j.tics.2011.04.003 [Google Scholar]
  29. Draper, B. A., Collins, R. T., Brolio, J., Hanson, A. R. & Riseman, E. M.
    (1989) The schema system. International Journal of Computer Vision, 2, 209–250.10.1007/BF00158165
    https://doi.org/10.1007/BF00158165 [Google Scholar]
  30. Fagg, A. H. & Arbib, M. A.
    (1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Netw, 11(7–8), 1277–1303.10.1016/S0893‑6080(98)00047‑1
    https://doi.org/10.1016/S0893-6080(98)00047-1 [Google Scholar]
  31. Fogassi, L., Coudé, G. & Ferrari, P. F.
    (2013) The extended features of mirror neurons and the voluntary control of vocalization in the pathway to language. Language and Cognition, 5, 145–155.10.1515/langcog‑2013‑0009
    https://doi.org/10.1515/langcog-2013-0009 [Google Scholar]
  32. Friederici, A. D.
    (2011) The brain basis of language processing: from structure to function. Physiological Reviews, 91(4), 1357–1392.10.1152/physrev.00006.2011
    https://doi.org/10.1152/physrev.00006.2011 [Google Scholar]
  33. Hagoort, P.
    (2013) MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4.10.3389/fpsyg.2013.00416.
    https://doi.org/10.3389/fpsyg.2013.00416 [Google Scholar]
  34. Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M. & Stout, D.
    (2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage, 108, 124–137.10.1016/j.neuroimage.2014.12.039
    https://doi.org/10.1016/j.neuroimage.2014.12.039 [Google Scholar]
  35. Hickok, G. & Poeppel, D.
    (2007) The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393–402.10.1038/nrn2113
    https://doi.org/10.1038/nrn2113 [Google Scholar]
  36. Hill, J. C.
    (1983) A computational model of language acquisition in the two-year-old. Cognition and Brain Theory, 6, 287–317.
    [Google Scholar]
  37. Kirby, S.
    (2000) Syntax without natural selection: How compositionality emerges from vocabulary in a population of learners, inKnight, C., Studdert-Kennedy, M. & Hurford, J. R. (eds), The evolutionary emergence of language. Cambridge: Cambridge University Press, 99–119.10.1017/CBO9780511606441.019
    https://doi.org/10.1017/CBO9780511606441.019 [Google Scholar]
  38. Kirby, S., Cornish, H. & Smith, K.
    (2008) Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences, 105(31), 10681–10686.10.1073/pnas.0707835105
    https://doi.org/10.1073/pnas.0707835105 [Google Scholar]
  39. Lightfoot, D. W.
    (2006) How New Languages Emerge. Cambridge: Cambridge University Press.10.1017/CBO9780511616204
    https://doi.org/10.1017/CBO9780511616204 [Google Scholar]
  40. MacWhinney, B.
    (1987) The Competition Model, inMacWhinney, B. (ed), Mechanisms of language acquisition. Hillsdale, NJ: Lawrence Erlbaum, 249–308.
    [Google Scholar]
  41. (2005) A unified model of language development, inKroll, J. F. & Groot, A. M. B. D. (eds), Handbook of bilingualism: Psycholinguistic approaches. Oxford: Oxford University Press, 49–67.
    [Google Scholar]
  42. (2014) Item-based patterns in early syntactic development, inHerbst, T., Schmid, H. -J. & Faulhaber, S. (eds), Constructions Collocations Patterns Walter de Gruyter, 33–69.
    [Google Scholar]
  43. Menenti, L., Gierhan, S. M. E., Segaert, K. & Hagoort, P.
    (2011) Shared Language Overlap and Segregation of the Neuronal Infrastructure for Speaking and Listening Revealed by Functional MRI. Psychological Science, 22(9), 1173–1182.10.1177/0956797611418347
    https://doi.org/10.1177/0956797611418347 [Google Scholar]
  44. Myowa, M.
    (2018) The Evolutionary Roots of Human Imitation, Action Representation, and Word Learning Interaction Studies, 19(1–2), 183–199.
    [Google Scholar]
  45. Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X. & Behrens, T. E.
    (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428.10.1038/nn2072
    https://doi.org/10.1038/nn2072 [Google Scholar]
  46. Sandler, W., Aronoff, M., Meir, I. & Padden, C.
    (2011) The gradual emergence of phonological form in a new language. Natural Language & Linguistic Theory.10.1007/s11049‑011‑9128‑2.
    https://doi.org/10.1007/s11049-011-9128-2 [Google Scholar]
  47. Segaert, K., Menenti, L., Weber, K., Petersson, K. M. & Hagoort, P.
    (2012) Shared Syntax in Language Production and Language Comprehension – An fMRI Study. Cerebral Cortex, 22(7), 1662–1670.10.1093/cercor/bhr249
    https://doi.org/10.1093/cercor/bhr249 [Google Scholar]
  48. Steels, L.
    (2011) Modeling the cultural evolution of language. Physics of Life Reviews, 8(4), 339–356.10.1016/j.plrev.2011.10.014
    https://doi.org/10.1016/j.plrev.2011.10.014 [Google Scholar]
  49. Wray, A.
    (1998) Protolanguage as a holistic system for social interaction. Language & Communication, 18, 47–67.10.1016/S0271‑5309(97)00033‑5
    https://doi.org/10.1016/S0271-5309(97)00033-5 [Google Scholar]
/content/journals/10.1075/is.17036.arb
Loading
/content/journals/10.1075/is.17036.arb
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error