1887
Volume 19, Issue 1-2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Empirical advances have been made in understanding how human language, in its combinatorial complexity and unbounded expressivity, may have evolved from the communication systems present in our evolutionary ancestors. However, a number of cognitive processes and neurobiological mechanisms that support language may not have evolved specifically for communication, but rather from abilities that support perception and cognition more generally. We review recent evidence from comparative behavioural and neurobiological studies on structured sequence learning in human and nonhuman primates. These studies support the notion that certain sequence learning abilities are evolutionarily conserved and engage corresponding inferior frontal brain regions across the species, regions also involved in processing language in humans. Alongside the cross-species similarities is evidence for human specialisations, illuminating the likely evolutionary pathways towards language in modern humans. We argue that cognitive abilities that were in place for animals to learn combinatorial relationships in the sensory world were available and co-opted for language in humans.

Loading

Article metrics loading...

/content/journals/10.1075/is.17038.wil
2018-09-17
2024-09-08
Loading full text...

Full text loading...

References

  1. Arbib, M. A.
    (2012) How the brain got language: The mirror system hypothesis (Vol.16): OUP USA.10.1093/acprof:osobl/9780199896684.001.0001
    https://doi.org/10.1093/acprof:osobl/9780199896684.001.0001 [Google Scholar]
  2. (2016) Towards a computational comparative neuroprimatology: framing the language-ready brain. Physics of life reviews, 16, 1–54.10.1016/j.plrev.2015.09.003
    https://doi.org/10.1016/j.plrev.2015.09.003 [Google Scholar]
  3. (2017) Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. Journal of Neurolinguistics, 43, 228–253.10.1016/j.jneuroling.2016.12.003
    https://doi.org/10.1016/j.jneuroling.2016.12.003 [Google Scholar]
  4. Arnold, K., & Zuberbuhler, K.
    (2006) Language evolution: semantic combinations in primate calls. Nature, 441(7091), 303.10.1038/441303a
    https://doi.org/10.1038/441303a [Google Scholar]
  5. Bahlmann, J., Schubotz, R. I., & Friederici, A. D.
    (2008) Hierarchical artificial grammar processing engages Broca’s area. NeuroImage, 42(2), 525–534.10.1016/j.neuroimage.2008.04.249
    https://doi.org/10.1016/j.neuroimage.2008.04.249 [Google Scholar]
  6. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B.
    (2000) Voice-selective areas in human auditory cortex. Nature, 403(6767), 309–312.10.1038/35002078
    https://doi.org/10.1038/35002078 [Google Scholar]
  7. Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M.
    (2003) Hierarchical classification by rank and kinship in baboons. Science, 302(5648), 1234–1236.10.1126/science.1087513
    https://doi.org/10.1126/science.1087513 [Google Scholar]
  8. Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J.
    (2013) Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 89–98.10.1016/j.tics.2012.12.002
    https://doi.org/10.1016/j.tics.2012.12.002 [Google Scholar]
  9. Bickerton, D., & Szathmary, E.
    (2009) Biological Foundations and Origin of Syntax. Cambridge, MA: MIT Press.10.7551/mitpress/9780262013567.001.0001
    https://doi.org/10.7551/mitpress/9780262013567.001.0001 [Google Scholar]
  10. Bolhuis, J. J., Okanoya, K., & Scharff, C.
    (2010) Twitter evolution: converging mechanisms in birdsong and human speech. Nature Reviews: Neuroscience, 11(11), 747–759.10.1038/nrn2931
    https://doi.org/10.1038/nrn2931 [Google Scholar]
  11. Bozic, M., Tyler, L. K., Ives, D. T., Randall, B., & Marslen-Wilson, W. D.
    (2010) Bihemispheric foundations for human speech comprehension. Proceedings of the National Academy of Sciences, USA, 107(40), 17439–17444.10.1073/pnas.1000531107
    https://doi.org/10.1073/pnas.1000531107 [Google Scholar]
  12. Brauer, J., Anwander, A., & Friederici, A. D.
    (2011) Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21(2), 459–466.10.1093/cercor/bhq108
    https://doi.org/10.1093/cercor/bhq108 [Google Scholar]
  13. Chakraborty, M., Walloe, S., Nedergaard, S., Fridel, E. E., Dabelsteen, T., Pakkenberg, B., Bertelsen, M. F., Dorrestein, G. M., Brauth, S. E., Durand, S. E., & Jarvis, E. D.
    (2015) Core and shell song systems unique to the parrot brain. PLoS One, 10(6), e0118496.0118410.0111371/journal.pone.0118496
    https://doi.org/0118410.0111371/journal.pone.0118496 [Google Scholar]
  14. Conway, C. M., & Pisoni, D. B.
    (2008) Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Annals of the New York Academy of Sciences, 1145(1), 113–131.10.1196/annals.1416.009
    https://doi.org/10.1196/annals.1416.009 [Google Scholar]
  15. Cope, T. E., Wilson, B., Robson, H., Drinkall, R., Dean, L., Grube, M., Jones, P. S., Patterson, K., Griffiths, T. D., & Rowe, J. B.
    (2017) Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia, 104, 201–213.10.1016/j.neuropsychologia.2017.08.022
    https://doi.org/10.1016/j.neuropsychologia.2017.08.022 [Google Scholar]
  16. Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D.
    (2016) Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158–164.10.1038/nn.4186
    https://doi.org/10.1038/nn.4186 [Google Scholar]
  17. Endress, A. D., Carden, S., Versace, E., & Hauser, M. D.
    (2010) The apes’ edge: positional learning in chimpanzees and humans. Animal Cognition, 13(3), 483–495.10.1007/s10071‑009‑0299‑8
    https://doi.org/10.1007/s10071-009-0299-8 [Google Scholar]
  18. Fedorenko, E., Duncan, J., & Kanwisher, N.
    (2012) Language-selective and domain-general regions lie side by side within Broca’s area. Current Biology, 22(21), 2059–2062.10.1016/j.cub.2012.09.011
    https://doi.org/10.1016/j.cub.2012.09.011 [Google Scholar]
  19. Fitch, W. T., & Friederici, A.
    (2012) Artificial grammar learning meets formal language theory: An overview. Philos Trans R Soc Lond B Biol Sci, 367, 1933–1955.10.1098/rstb.2012.0103
    https://doi.org/10.1098/rstb.2012.0103 [Google Scholar]
  20. Fitch, W. T., & Hauser, M. D.
    (2004) Computational constraints on syntactic processing in a nonhuman primate. Science, 303(5656), 377–380.10.1126/science.1089401
    https://doi.org/10.1126/science.1089401 [Google Scholar]
  21. Friederici, A. D.
    (2011) The brain basis of language processing: from structure to function. Physiological Reviews, 91(4), 1357–1392.10.1152/physrev.00006.2011
    https://doi.org/10.1152/physrev.00006.2011 [Google Scholar]
  22. (2017) Evolution of the neural language network. Psychonomic bulletin & review, 24(1), 41–47.10.3758/s13423‑016‑1090‑x
    https://doi.org/10.3758/s13423-016-1090-x [Google Scholar]
  23. (2017) Language in our brain: The origins of a uniquely human capacity. MIT Press.
    [Google Scholar]
  24. Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A.
    (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proceedings of the National Academy of Sciences, USA, 103(7), 2458–2463.10.1073/pnas.0509389103
    https://doi.org/10.1073/pnas.0509389103 [Google Scholar]
  25. Fritz, J., Mishkin, M., & Saunders, R. C.
    (2005) In search of an auditory engram. Proc Natl Acad Sci U S A, 102(26), 9359–9364.10.1073/pnas.0503998102
    https://doi.org/10.1073/pnas.0503998102 [Google Scholar]
  26. Gabay, Y., Thiessen, E. D., & Holt, L. L.
    (2015) Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934–945.10.1044/2015_JSLHR‑L‑14‑0324
    https://doi.org/10.1044/2015_JSLHR-L-14-0324 [Google Scholar]
  27. Giraud, A. L., & Poeppel, D.
    (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.10.1038/nn.3063
    https://doi.org/10.1038/nn.3063 [Google Scholar]
  28. Gómez, R.
    (2002) Variability and detection of invariant structure. Psychological Science, 13(5), 431–436.10.1111/1467‑9280.00476
    https://doi.org/10.1111/1467-9280.00476 [Google Scholar]
  29. Grube, M., Bruffaerts, R., Schaeverbeke, J., Neyens, V., De Weer, A. -S., Seghers, A., Bergmans, B., Dries, E., Griffiths, T. D., & Vandenberghe, R.
    (2016) Core auditory processing deficits in primary progressive aphasia. Brain, aww06710.1093/brain/aww067
    https://doi.org/10.1093/brain/aww067 [Google Scholar]
  30. Hage, S. R., & Nieder, A.
    (2013) Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nature Communications, 4, 2409.10.1038/ncomms3409
    https://doi.org/10.1038/ncomms3409 [Google Scholar]
  31. Hauser, M. D., & Glynn, D.
    (2009) Can Free-Ranging Rhesus Monkeys (Macaca mulatta) Extract Artificially Created Rules Comprised of Natural Vocalizations?Journal of Comparative Psychology, 123(2), 161–167.10.1037/a0015584
    https://doi.org/10.1037/a0015584 [Google Scholar]
  32. Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D.
    (2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. NeuroImage, 108, 124–137.10.1016/j.neuroimage.2014.12.039
    https://doi.org/10.1016/j.neuroimage.2014.12.039 [Google Scholar]
  33. Heimbauer, L. A., Conway, C. M., Christiansen, M. H., Beran, M. J., & Owren, M. J.
    (2018) Visual artificial grammar learning by rhesus macaques (Macaca mulatta): exploring the role of grammar complexity and sequence length. Animal Cognition, 1–18.
    [Google Scholar]
  34. Hickok, G., & Poeppel, D.
    (2007) The cortical organization of speech processing. Nature Reviews: Neuroscience, 8(5), 393–402.10.1038/nrn2113
    https://doi.org/10.1038/nrn2113 [Google Scholar]
  35. Honda, E., & Okanoya, K.
    (1999) Acoustical and syntactical comparisons between songs of the white-backed Munia (Lonchura striata) and its domesticated strain, the Bengalese finch (Lonchura striata var. domestica). Zoological Science, 16, 319–326.10.2108/zsj.16.319
    https://doi.org/10.2108/zsj.16.319 [Google Scholar]
  36. Hsu, H. J., Tomblin, J. B., & Christiansen, M. H.
    (2014) Impaired statistical learning of non-adjacent dependencies in adolescents with specific language impairment. Frontiers in psychology, 5.10.3389/fpsyg.2014.00175
    https://doi.org/10.3389/fpsyg.2014.00175 [Google Scholar]
  37. Hurford, J. R.
    (2012) The Origins of Grammar: Language in the Light of Evolution II: Oxford University Press.
    [Google Scholar]
  38. (2018) Mutation, modularity, merge, communication and selection. Current Opinion in Behavioral Sciences, 21, 76–79.10.1016/j.cobeha.2018.01.011
    https://doi.org/10.1016/j.cobeha.2018.01.011 [Google Scholar]
  39. Kikuchi, Y., Attaheri, A., Wilson, B., Rhone, A. E., Nourski, K. V., Gander, P. E., Kovach, C. K., Kawasaki, H., Griffiths, T. D., & Howard Iii, M. A.
    (2017) Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. PLoS Biology, 15(4), e2000219.10.1371/journal.pbio.2000219
    https://doi.org/10.1371/journal.pbio.2000219 [Google Scholar]
  40. Lam, N. H. L., Schoffelen, J. -M., Uddén, J., Hultén, A., & Hagoort, P.
    (2016) Neural activity during sentence processing as reflected in theta, alpha, beta, and gamma oscillations. NeuroImage, 142, 43–54.10.1016/j.neuroimage.2016.03.007
    https://doi.org/10.1016/j.neuroimage.2016.03.007 [Google Scholar]
  41. Locurto, C., Fox, M., & Mazzella, A.
    (2015) Implicit learning in cotton-top tamarins (Saguinus oedipus) and pigeons (Columba livia). Learning & Behavior, 43(2), 129–142.10.3758/s13420‑015‑0167‑0
    https://doi.org/10.3758/s13420-015-0167-0 [Google Scholar]
  42. Lu, K., & Vicario, D. S.
    (2014) Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain. Proceedings of the National Academy of Sciences, USA, 111(40), 14553–14558.10.1073/pnas.1412109111
    https://doi.org/10.1073/pnas.1412109111 [Google Scholar]
  43. Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D.
    (2009) Segregating the core computational faculty of human language from working memory. Proceedings of the National Academy of Sciences, USA, 106(20), 8362–8367.10.1073/pnas.0810928106
    https://doi.org/10.1073/pnas.0810928106 [Google Scholar]
  44. Mars, R. B., Eichert, N., Jbabdi, S., Verhagen, L., & Rushworth, M. F. S.
    (2018) Connectivity and the search for specializations in the language-capable brain. Current Opinion in Behavioral Sciences, 21, 19–26.10.1016/j.cobeha.2017.11.001
    https://doi.org/10.1016/j.cobeha.2017.11.001 [Google Scholar]
  45. Meyer, T., Ramachandran, R., & Olson, C. R.
    (2014) Statistical Learning of Serial Visual Transitions by Neurons in Monkey Inferotemporal Cortex. The Journal of neuroscience, 34(28), 9332–9337.10.1523/JNEUROSCI.1215‑14.2014
    https://doi.org/10.1523/JNEUROSCI.1215-14.2014 [Google Scholar]
  46. Miller, C. T., Thomas, A. W., Nummela, S. U., & Lisa, A.
    (2015) Responses of primate frontal cortex neurons during natural vocal communication. Journal of Neurophysiology, 114(2), 1158–1171.10.1152/jn.01003.2014
    https://doi.org/10.1152/jn.01003.2014 [Google Scholar]
  47. Milne, A. E., Mueller, J. L., Männel, C., Attaheri, A., Friederici, A. D., & Petkov, C. I.
    (2016) Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Scientific Reports, 6.10.1038/srep36259
    https://doi.org/10.1038/srep36259 [Google Scholar]
  48. Milne, A. E., Petkov, C. I., & Wilson, B.
    (2017) Auditory and visual sequence learning in humans and monkeys using an artificial grammar learning paradigm. Neuroscience.10.1016/j.neuroscience.2017.06.059
    https://doi.org/10.1016/j.neuroscience.2017.06.059 [Google Scholar]
  49. Neubert, F. X., Mars, R. B., Thomas, A. G., Sallet, J., & Rushworth, M. F.
    (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron, 81(3), 700–713.10.1016/j.neuron.2013.11.012
    https://doi.org/10.1016/j.neuron.2013.11.012 [Google Scholar]
  50. Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N.
    (2004) Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate. Cogn. Psychol., 49(2), 85–117.10.1016/j.cogpsych.2003.12.002
    https://doi.org/10.1016/j.cogpsych.2003.12.002 [Google Scholar]
  51. Patel, G. H., Yang, D., Jamerson, E. C., Snyder, L. H., Corbetta, M., & Ferrera, V. P.
    (2015) Functional evolution of new and expanded attention networks in humans. Proceedings of the National Academy of Sciences, 112(30), 9454–9459.10.1073/pnas.1420395112
    https://doi.org/10.1073/pnas.1420395112 [Google Scholar]
  52. Pelucchi, B., Hay, J. F., & Saffran, J. R.
    (2009) Statistical Learning in a Natural Language by 8‐Month‐Old Infants. Child Development, 80(3), 674–685.10.1111/j.1467‑8624.2009.01290.x
    https://doi.org/10.1111/j.1467-8624.2009.01290.x [Google Scholar]
  53. Petersson, K. M., Folia, V., & Hagoort, P.
    (2012) What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83–95.10.1016/j.bandl.2010.08.003
    https://doi.org/10.1016/j.bandl.2010.08.003 [Google Scholar]
  54. Petkov, C., Kang, X., Alho, K., Bertrand, O., Yund, E., & Woods, D.
    (2004) Attentional modulation of human auditory cortex. Nature Neuroscience, 7(6), 658–663.10.1038/nn1256
    https://doi.org/10.1038/nn1256 [Google Scholar]
  55. Petkov, C. I., & Jarvis, E. D.
    (2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4, 12.10.3389/fnevo.2012.00012
    https://doi.org/10.3389/fnevo.2012.00012 [Google Scholar]
  56. Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K.
    (2008) A voice region in the monkey brain. Nature Neuroscience, 11(3), 367–374.10.1038/nn2043
    https://doi.org/10.1038/nn2043 [Google Scholar]
  57. Ravignani, A., Sonnweber, R. -S., Stobbe, N., & Fitch, W. T.
    (2013) Action at a distance: dependency sensitivity in a New World primate. Biology Letters, 9(6), 20130852.10.1098/rsbl.2013.0852
    https://doi.org/10.1098/rsbl.2013.0852 [Google Scholar]
  58. Ravignani, A., & Sonnweber, R.
    (2017) Chimpanzees process structural isomorphisms across sensory modalities. Cognition, 161, 74–79.10.1016/j.cognition.2017.01.005
    https://doi.org/10.1016/j.cognition.2017.01.005 [Google Scholar]
  59. Reber, A. S.
    (1967) Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behaviour, 6(6), 855–863.10.1016/S0022‑5371(67)80149‑X
    https://doi.org/10.1016/S0022-5371(67)80149-X [Google Scholar]
  60. Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J.
    (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428.10.1038/nn2072
    https://doi.org/10.1038/nn2072 [Google Scholar]
  61. Rinne, T., Muers, R. S., Salo, E., Slater, H., & Petkov, C. I.
    (2017) Functional imaging of audio–visual selective attention in monkeys and humans: How do lapses in monkey performance affect cross-species correspondences?Cerebral Cortex, 27(6), 3471–3484.10.1093/cercor/bhx092
    https://doi.org/10.1093/cercor/bhx092 [Google Scholar]
  62. Rizzolatti, G., & Arbib, M. A.
    (1998) Language within our grasp. Trends in Neurosciences, 21(5), 188–194.10.1016/S0166‑2236(98)01260‑0
    https://doi.org/10.1016/S0166-2236(98)01260-0 [Google Scholar]
  63. Saffran, J., Hauser, M. D., Seibel, R., Kapfhamer, J., Tsao, F., & Cushman, F.
    (2008) Grammatical pattern learning by human infants and cotton-top tamarin monkeys. Cognition, 107(2), 479–500.10.1016/j.cognition.2007.10.010
    https://doi.org/10.1016/j.cognition.2007.10.010 [Google Scholar]
  64. Saffran, J. R.
    (2002) Constraints on statistical language learning. Journal of Memory and Language, 47(1), 172–196.10.1006/jmla.2001.2839
    https://doi.org/10.1006/jmla.2001.2839 [Google Scholar]
  65. Saffran, J. R., Aslin, R. N., & Newport, E. L.
    (1996) Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.10.1126/science.274.5294.1926
    https://doi.org/10.1126/science.274.5294.1926 [Google Scholar]
  66. Santolin, C., & Saffran, J. R.
    (2017) Constraints on Statistical Learning Across Species. Trends in Cognitive Sciences.
    [Google Scholar]
  67. Schlenker, P., Chemla, E., & Zuberbühler, K.
    (2016) What Do Monkey Calls Mean?Trends in Cognitive Sciences, 20(12), 894–904.10.1016/j.tics.2016.10.004
    https://doi.org/10.1016/j.tics.2016.10.004 [Google Scholar]
  68. Schulze, K., Vargha-Khadem, F., & Mishkin, M.
    (2012) Test of a motor theory of long-term auditory memory. Proceedings of the National Academy of Sciences, 109(18), 7121–7125.10.1073/pnas.1204717109
    https://doi.org/10.1073/pnas.1204717109 [Google Scholar]
  69. Scott, B. H., Mishkin, M., & Yin, P.
    (2012) Monkeys have a limited form of short-term memory in audition. Proceedings of the National Academy of Sciences, 109(30), 12237–12241.10.1073/pnas.1209685109
    https://doi.org/10.1073/pnas.1209685109 [Google Scholar]
  70. Seyfarth, R. M., & Cheney, D. L.
    (2017) Precursors to language: Social cognition and pragmatic inference in primates. Psychonomic bulletin & review, 24(1), 79–84.10.3758/s13423‑016‑1059‑9
    https://doi.org/10.3758/s13423-016-1059-9 [Google Scholar]
  71. Shettleworth, S. J.
    (2010) Cognition, evolution, and behavior (2nd ed.): Oxford University Press.
    [Google Scholar]
  72. Shima, K., Isoda, M., Mushiake, H., & Tanji, J.
    (2007) Categorization of behavioural sequences in the prefrontal cortex. Nature, 445(7125), 315.10.1038/nature05470
    https://doi.org/10.1038/nature05470 [Google Scholar]
  73. Sonnweber, R., Ravignani, A., & Fitch, W. T.
    (2015) Non-adjacent visual dependency learning in chimpanzees. Animal Cognition, 1–13.
    [Google Scholar]
  74. Spierings, M. J., & ten Cate, C.
    (2016) Budgerigars and zebra finches differ in how they generalize in an artificial grammar learning experiment. Proceedings of the National Academy of Sciences, USA, 113(27), E3977–E3984.10.1073/pnas.1600483113
    https://doi.org/10.1073/pnas.1600483113 [Google Scholar]
  75. Stobbe, N., Westphal-Fitch, G., Aust, U., & Fitch, W. T.
    (2012) Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia). Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1995–2006.10.1098/rstb.2012.0096
    https://doi.org/10.1098/rstb.2012.0096 [Google Scholar]
  76. Taglialatela, J. P., Russell, J. L., Schaeffer, J. A., & Hopkins, W. D.
    (2008) Communicative signaling activates ‘Broca’s’ homolog in chimpanzees. Current Biology, 18(5), 343–348.10.1016/j.cub.2008.01.049
    https://doi.org/10.1016/j.cub.2008.01.049 [Google Scholar]
  77. ten Cate, C.
    (2017) Assessing the uniqueness of language: Animal grammatical abilities take center stage. Psychonomic bulletin & review, 24(1), 91–96.10.3758/s13423‑016‑1091‑9
    https://doi.org/10.3758/s13423-016-1091-9 [Google Scholar]
  78. (2018) The comparative study of grammar learning mechanisms: birds as models. Current Opinion in Behavioral Sciences, 21, 13–18.10.1016/j.cobeha.2017.11.008
    https://doi.org/10.1016/j.cobeha.2017.11.008 [Google Scholar]
  79. Tu, H. -W., & Dooling, R. J.
    (2012) Perception of warble song in budgerigars (Melopsittacus undulatus): evidence for special processing. Animal Cognition, 15(6), 1151–1159.10.1007/s10071‑012‑0539‑1
    https://doi.org/10.1007/s10071-012-0539-1 [Google Scholar]
  80. Van Essen, D. C., & Dierker, D. L.
    (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron, 56(2), 209–225.10.1016/j.neuron.2007.10.015
    https://doi.org/10.1016/j.neuron.2007.10.015 [Google Scholar]
  81. Vernaleo, B. A., & Dooling, R. J.
    (2011) Relative salience of envelope and fine structure cues in zebra finch song. The Journal of the Acoustical Society of America, 129(5), 3373–3383.10.1121/1.3560121
    https://doi.org/10.1121/1.3560121 [Google Scholar]
  82. Wang, L., Uhrig, L., Jarraya, B., & Dehaene, S.
    (2015) Representation of numerical and sequential patterns in macaque and human brains. Current Biology, 25(15), 1966–1974.10.1016/j.cub.2015.06.035
    https://doi.org/10.1016/j.cub.2015.06.035 [Google Scholar]
  83. Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., & Petkov, C. I.
    (2015a) Auditory sequence processing engages evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6(8901).
    [Google Scholar]
  84. Wilson, B., Marslen-Wilson, W. D., & Petkov, C. I.
    (2017) Conserved sequence processing in primate frontal cortex. Trends in Neurosciences.10.1016/j.tins.2016.11.004
    https://doi.org/10.1016/j.tins.2016.11.004 [Google Scholar]
  85. Wilson, B., & Petkov, C. I.
    (2017) Relational knowledge and the origins of language. InR. Seyfarth, D. L. Cheney & M. L. Platt (Eds.), The social origins of language. Princeton and Oxford: Princeton University Press.
    [Google Scholar]
  86. Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., & Petkov, C. I.
    (2013) Auditory artificial grammar learning in macaque and marmoset monkeys. Journal of Neuroscience, 33(48), 18825–18835.10.1523/JNEUROSCI.2414‑13.2013
    https://doi.org/10.1523/JNEUROSCI.2414-13.2013 [Google Scholar]
  87. Wilson, B., Smith, K., & Petkov, C. I.
    (2015b) Mixed-complexity artificial grammar learning in humans and macaque monkeys: evaluating learning strategies. European Journal of Neuroscience, 41(5), 568–578.10.1111/ejn.12834
    https://doi.org/10.1111/ejn.12834 [Google Scholar]
  88. Zimmerer, VC, Cowell, PE, Varley, RA
    (2014) Artificial grammar learning in individuals with severe aphasia. Neuropsychologia53:25–38.10.1016/j.neuropsychologia.2013.10.014
    https://doi.org/10.1016/j.neuropsychologia.2013.10.014 [Google Scholar]
/content/journals/10.1075/is.17038.wil
Loading
/content/journals/10.1075/is.17038.wil
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): behaviour; comparative; human; language evolution; monkey; neuroimaging; sequence processing; syntax
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error