1887
Volume 19, Issue 1-2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Evolutionary change occurs most often through the modification of pre-existing structures. What were the pre-existing circuits in our primate ancestors that paved the way for human language, and how did they change in the lineages leading to our present condition? Among the neural modifications that were critical for human language, there are two of special interest: The origin and evolution of the remarkably rich conceptual world that humans share to the exclusion of other primates (which made possible increasingly sophisticated communication systems), and the origin of neural circuitry that underlies various sequential and hierarchical aspects of language, as utilized for example in syntax and word morphology. The fossil record of brain evolution and the archaeological record provide intriguing clues about these processes.

Loading

Article metrics loading...

/content/journals/10.1075/is.17041.sch
2018-09-17
2024-12-08
Loading full text...

Full text loading...

References

  1. Arbib, M. A.
    (2017) Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. J. Neurolinguistics43, 228–253.10.1016/j.jneuroling.2016.12.003
    https://doi.org/10.1016/j.jneuroling.2016.12.003 [Google Scholar]
  2. (2016) Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons. Psychon. Bull. Rev.
    [Google Scholar]
  3. Avants, B., Gee, J.
    (2003) The shape operator for differential analysis of images. Inf Process Med Imaging18, 101–13.10.1007/978‑3‑540‑45087‑0_9
    https://doi.org/10.1007/978-3-540-45087-0_9 [Google Scholar]
  4. Avants, B. B., Gee, J. C., Schoenemann, P. T., Monge, J., Lewis, J. E., Holloway, R. L.
    (2005) A new method for assessing endocast morphology: calculating local curvature from 3D CT images. Am. J. Phys. Anthropol. 126, 67.
    [Google Scholar]
  5. Begun, D., Walker, A.
    (1993) The endocast. Nariokotome Homo Erectus Skelet. 326–358.
    [Google Scholar]
  6. Begun, D. R., Kordos, L.
    (2004) Cranial evidence of the evolution of intelligence in fossil apes, in: Russon, A. E., Begun, D. R. (Eds.), The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence. Cambridge University Press, Cambridge, pp.260–279.10.1017/CBO9780511542299.018
    https://doi.org/10.1017/CBO9780511542299.018 [Google Scholar]
  7. Bergman, T. J., Beehner, J. C., Cheney, D. L., Seyfarth, R. M.
    (2003) Hierarchical classification by rank and kinship in baboons. Science302, 1234–1236.10.1126/science.1087513
    https://doi.org/10.1126/science.1087513 [Google Scholar]
  8. Berwick, R. C., Friederici, A. D., Chomsky, N., Bolhuis, J. J.
    (2013) Evolution, brain, and the nature of language. Trends Cogn. Sci.17, 89–98.10.1016/j.tics.2012.12.002
    https://doi.org/10.1016/j.tics.2012.12.002 [Google Scholar]
  9. Bock, W. J.
    (1959) Preadaptation and Multiple Evolutionary Pathways. Evolution13, 194–211.10.2307/2405873
    https://doi.org/10.2307/2405873 [Google Scholar]
  10. Bramão, I., Faísca, L., Forkstam, C., Reis, A., Petersson, K. M.
    (2010) Cortical brain regions associated with color processing: An FMRI study. Open Neuroimaging J. 4, 164–173.10.2174/1874440001004010164
    https://doi.org/10.2174/1874440001004010164 [Google Scholar]
  11. Bruner, E., Preuss, T. M., Chen, X., Rilling, J. K.
    (2016) Evidence for expansion of the precuneus in human evolution. Brain Struct. Funct.10.1007/s00429‑015‑1172‑y
    https://doi.org/10.1007/s00429-015-1172-y [Google Scholar]
  12. Changizi, M. A., Shimojo, S.
    (2005) Parcellation and area-area connectivity as a function of neocortex size. Brain. Behav. Evol.66, 88–98.10.1159/000085942
    https://doi.org/10.1159/000085942 [Google Scholar]
  13. Christiansen, M. H., Kelly, M. L., Shillcock, R. C., Greenfield, K.
    (2010) Impaired artificial grammar learning in agrammatism. Cognition116, 382–393.10.1016/j.cognition.2010.05.015
    https://doi.org/10.1016/j.cognition.2010.05.015 [Google Scholar]
  14. DeCasien, A. R., Williams, S. A., Higham, J. P.
    (2017) Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol.1, 0112.10.1038/s41559‑017‑0112
    https://doi.org/10.1038/s41559-017-0112 [Google Scholar]
  15. Dunbar, R. I. M.
    (2003) The Social Brain: Mind, Language, and Society in Evolutionary Perspective. Annu. Rev. Anthropol. 32, 163–81.10.1146/annurev.anthro.32.061002.093158
    https://doi.org/10.1146/annurev.anthro.32.061002.093158 [Google Scholar]
  16. Falk, D.
    (2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front. Hum. Neurosci. 8, 1–11.10.3389/fnhum.2014.00134
    https://doi.org/10.3389/fnhum.2014.00134 [Google Scholar]
  17. (1983) Cerebral cortices of East African early hominids. Science221, 1072–1074.10.1126/science.221.4615.1072
    https://doi.org/10.1126/science.221.4615.1072 [Google Scholar]
  18. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., Jiang, T.
    (2016) The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb. Cortex26, 3508–3526.10.1093/cercor/bhw157
    https://doi.org/10.1093/cercor/bhw157 [Google Scholar]
  19. Fedorenko, E., Duncan, J., Kanwisher, N.
    (2012) Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area. Curr. Biol. 22, 2059–2062.10.1016/j.cub.2012.09.011
    https://doi.org/10.1016/j.cub.2012.09.011 [Google Scholar]
  20. Gilbert, W. H., Holloway, R. L., Kubo, D., Kono, R. T., Suwa, G.
    (2008) Tomographic analysis of the Daka calvaria. Homo Erectus Pleistocene Evid. Middle Awash Ethiop. Univ. Calif. Press Berkeley Los Angel. 329–347.
    [Google Scholar]
  21. Gil-da-Costa, R., Martin, A., Lopes, M. A., Munoz, M., Fritz, J. B., Braun, A. R.
    (2006) Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nat Neurosci9, 1064–1070.10.1038/nn1741
    https://doi.org/10.1038/nn1741 [Google Scholar]
  22. Gong, T., Shuai, L., Zhang, M.
    (2014) Modelling language evolution: Examples and predictions. Phys. Life Rev.11, 280–302.10.1016/j.plrev.2013.11.009
    https://doi.org/10.1016/j.plrev.2013.11.009 [Google Scholar]
  23. Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., Collins, D. L.
    (2006) Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults, in: Larsen, R., Nielsen, M., Sporring, J. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part II. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.58–66.
    [Google Scholar]
  24. Grodzinsky, Y.
    (2000) The neurology of syntax: language use without Broca’s area. Behav. Brain Sci.23, 1–21; discussion21–71.10.1017/S0140525X00002399
    https://doi.org/10.1017/S0140525X00002399 [Google Scholar]
  25. Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., Boës, X., Quinn, R. L., Brenet, M., Arroyo, A., Taylor, N., Clément, S., Daver, G., Brugal, J. -P., Leakey, L., Mortlock, R. A., Wright, J. D., Lokorodi, S., Kirwa, C., Kent, D. V., Roche, H.
    (2015) 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature521, 310–315.10.1038/nature14464
    https://doi.org/10.1038/nature14464 [Google Scholar]
  26. Holloway, R. L.
    (1983) Human paleontological evidence relevant to language behavior. Hum. Neurobiol. 2, 105–114.
    [Google Scholar]
  27. (1980) Indonesian “Solo” (Ngandong) endocranial reconstructions: Some preliminary obserbations and comparisons with Neanderthal and Homo erectus groups. Am. J. Phys. Anthropol. 53, 285–295.10.1002/ajpa.1330530213
    https://doi.org/10.1002/ajpa.1330530213 [Google Scholar]
  28. (1976) Paleoneurological evidence for language origins. Ann. N. Y. Acad. Sci.280, 330–348.10.1111/j.1749‑6632.1976.tb25498.x
    https://doi.org/10.1111/j.1749-6632.1976.tb25498.x [Google Scholar]
  29. Holloway, R. L., Broadfield, D. C., Yuan, M. S.
    (2004) The Human Fossil Record, Volume 3. Brain Endocasts – The Paleoneurological Evidence, The Human Fossil Record. John Wiley & Sons, Hoboken.10.1002/0471663573
    https://doi.org/10.1002/0471663573 [Google Scholar]
  30. Humphrey, N.
    (1984) The social function of intellect, in: Consciousness Regained. Oxford University Press, Oxford, pp.14–28.
    [Google Scholar]
  31. Isaac, G. L.
    (1976) Stages of cultural elaboration in the pleistocene: Possible archaeological indicators of the development of language capabilities. Ann. N. Y. Acad. Sci.280, 275–288.10.1111/j.1749‑6632.1976.tb25494.x
    https://doi.org/10.1111/j.1749-6632.1976.tb25494.x [Google Scholar]
  32. Jacob, F.
    (1977) Evolution and tinkering. Science196, 1161–1166.10.1126/science.860134
    https://doi.org/10.1126/science.860134 [Google Scholar]
  33. Jerison, H. J.
    (1985) Animal intelligence as encephalization. Philos. Trans. R. Soc. Lond. Ser. B308, 21–35.10.1098/rstb.1985.0007
    https://doi.org/10.1098/rstb.1985.0007 [Google Scholar]
  34. Keller, S. S., Roberts, N., Hopkins, W.
    (2009) A comparative magnetic resonance imaging study of the anatomy, variability, and asymmetry of Broca’s area in the human and chimpanzee brain. J Neurosci29, 14607–16.10.1523/JNEUROSCI.2892‑09.2009
    https://doi.org/10.1523/JNEUROSCI.2892-09.2009 [Google Scholar]
  35. Lieberman, P.
    (2000) Human language and our reptilian brain : the subcortical bases of speech, syntax, and thought, Perspectives in cognitive neuroscience. Harvard University Press, Cambridge, Mass.
    [Google Scholar]
  36. Mars, R. B., Sallet, J., Neubert, F. -X., Rushworth, M. F.
    (2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc. Natl. Acad. Sci.110, 10806–10811.10.1073/pnas.1302956110
    https://doi.org/10.1073/pnas.1302956110 [Google Scholar]
  37. Mayr, E.
    (1978) Evolution. Sci. Am.239, 47–55.10.1038/scientificamerican0978‑46
    https://doi.org/10.1038/scientificamerican0978-46 [Google Scholar]
  38. Miller, G. A., Gildea, P. M.
    (1991) How children learn words, in: Wang, W. S. -Y. (Ed.), The Emergence of Language: Development and Evolution. W. H. Freeman, New York, pp.150–158.
    [Google Scholar]
  39. Morgan, T. J. H., Uomini, N. T., Rendell, L. E., Chouinard-Thuly, L., Street, S. E., Lewis, H. M., Cross, C. P., Evans, C., Kearney, R., de la Torre, I., Whiten, A., Laland, K. N.
    (2015) Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nat. Commun.6, 6029.10.1038/ncomms7029
    https://doi.org/10.1038/ncomms7029 [Google Scholar]
  40. Nakajima, T., Hosaka, R., Tsuda, I., Tanji, J., Mushiake, H.
    (2013) Two-Dimensional Representation of Action and Arm-Use Sequences in the Presupplementary and Supplementary Motor Areas. J. Neurosci. 33, 15533–15544.10.1523/JNEUROSCI.0855‑13.2013
    https://doi.org/10.1523/JNEUROSCI.0855-13.2013 [Google Scholar]
  41. Petersson, K. -M., Folia, V., Hagoort, P.
    (2012) What artificial grammar learning reveals about the neurobiology of syntax. Brain Lang. 120, 83–95.10.1016/j.bandl.2010.08.003
    https://doi.org/10.1016/j.bandl.2010.08.003 [Google Scholar]
  42. Petrides, M., Cadoret, G., Mackey, S.
    (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature435, 1235–8.10.1038/nature03628
    https://doi.org/10.1038/nature03628 [Google Scholar]
  43. Petrides, M., Pandya, D. N.
    (2009) Distinct Parietal and Temporal Pathways to the Homologues of Broca’s Area in the Monkey. PLoS Biol. 7, e1000170.10.1371/journal.pbio.1000170
    https://doi.org/10.1371/journal.pbio.1000170 [Google Scholar]
  44. Picton, T. W.
    (1992) The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479.10.1097/00004691‑199210000‑00002
    https://doi.org/10.1097/00004691-199210000-00002 [Google Scholar]
  45. Powell, A., Shennan, S., Thomas, M. G.
    (2009) Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science324, 1298–1301.10.1126/science.1170165
    https://doi.org/10.1126/science.1170165 [Google Scholar]
  46. Powell, L. E., Isler, K., Barton, R. A.
    (2017) Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci.284, 20171765.10.1098/rspb.2017.1765
    https://doi.org/10.1098/rspb.2017.1765 [Google Scholar]
  47. Poza-Rey, E. M., Lozano, M., Arsuaga, J. L.
    (2017) Brain asymmetries and handedness in the specimens from the Sima de los Huesos site (Atapuerca, Spain). Quat. Int.433, 32–44.10.1016/j.quaint.2015.10.004
    https://doi.org/10.1016/j.quaint.2015.10.004 [Google Scholar]
  48. Putt, S. S., Wijeakumar, S., Franciscus, R. G., Spencer, J. P.
    (2017) The functional brain networks that underlie Early Stone Age tool manufacture. Nat. Hum. Behav.10.1038/s41562‑017‑0102
    https://doi.org/10.1038/s41562-017-0102 [Google Scholar]
  49. Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., Brakke, K. E., Williams, S. L., Rumbaugh, D. M.
    (1993) Language comprehension in ape and child. Monogr. Soc. Res. Child Dev.58, 1–222.10.2307/1166068
    https://doi.org/10.2307/1166068 [Google Scholar]
  50. Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., Semendeferi, K.
    (2008) A Comparative Quantitative Analysis of Cytoarchitecture and Minicolumnar Organization in Broca’s Area in Humans and Great Apes. J. Comp. Neurol.510, 117–128.10.1002/cne.21792
    https://doi.org/10.1002/cne.21792 [Google Scholar]
  51. Schenker, N. M., Hopkins, W. D., Spocter, M. A., Garrison, A. R., Stimpson, C. D., Erwin, J. M., Hof, P. R., Sherwood, C. C.
    (2010) Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb. Cortex20, 730–42.10.1093/cercor/bhp138
    https://doi.org/10.1093/cercor/bhp138 [Google Scholar]
  52. Schoenemann, P. T.
    (2017) A complex-adaptive-systems approach to the evolution of language and the brain, in: Mufwene, S. S., Coupé, C., Pellegrino, F. (Eds.), Complexity in Language: Developmental and Evolutionary Perspectives, Cambridge Approaches to Language Contact. Cambridge University Press, pp.67–100.10.1017/9781107294264.004
    https://doi.org/10.1017/9781107294264.004 [Google Scholar]
  53. (2013) Hominid Brain Evolution, in: Begun, D. R. (Ed.), A Companion to Paleoanthropology. Wiley-Blackwell, Chichester, UK, pp.136–164.10.1002/9781118332344.ch8
    https://doi.org/10.1002/9781118332344.ch8 [Google Scholar]
  54. (2012) Evolution of brain and language, in: Hofman, M. A., Falk, D. (Eds.), Progress in Brain Research. Elsevier, Amsterdam: The Netherlands, pp.443–459.
    [Google Scholar]
  55. (1999) Syntax as an emergent characteristic of the evolution of semantic complexity. Minds Mach. 9, 309–346.10.1023/A:1008360020568
    https://doi.org/10.1023/A:1008360020568 [Google Scholar]
  56. Schoenemann, P. T., Holloway, R. L.
    (2016) Brain function and Broca’s Cap: A meta-analysis of fMRI studies. Am. J. Phys. Anthropol.159, 283.
    [Google Scholar]
  57. Schoenemann, P. T., Sheehan, M. J., Glotzer, L. D.
    (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci.8, 242–52.10.1038/nn1394
    https://doi.org/10.1038/nn1394 [Google Scholar]
  58. Semaw, S., Rogers, M. J., Quade, J., Renne, P. R., Butler, R. F., Dominguez-Rodrigo, M., Stout, D., Hart, W. S., Pickering, T., Simpson, S. W.
    (2003) 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Hum Evol45, 169–77.10.1016/S0047‑2484(03)00093‑9
    https://doi.org/10.1016/S0047-2484(03)00093-9 [Google Scholar]
  59. Seyfarth, R. M., Cheney, D. L., Marler, P.
    (1980) Monkey Responses to Three Different Alarm Calls: Evidence of Predator Classification and Semantic Communication. Science210, 801–803.10.1126/science.7433999
    https://doi.org/10.1126/science.7433999 [Google Scholar]
  60. Smith, K., Kirby, S., Brighton, H.
    (2003) Iterated learning: a framework for the emergence of language. Artif. Life9, 371–86.10.1162/106454603322694825
    https://doi.org/10.1162/106454603322694825 [Google Scholar]
  61. Snowdon, C. T.
    (1990) Language capacities of nonhuman animals. Yearb. Phys. Anthropol. 33, 215–243.10.1002/ajpa.1330330510
    https://doi.org/10.1002/ajpa.1330330510 [Google Scholar]
  62. Stephan, H., Frahm, H., Baron, G.
    (1981) New and revised data on volumes of brain structures in Insectivores and Primates. Folia Primatol. (Basel)35, 1–29.10.1159/000155963
    https://doi.org/10.1159/000155963 [Google Scholar]
  63. Stout, D., Chaminade, T.
    (2012) Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci.367, 75–87.10.1098/rstb.2011.0099
    https://doi.org/10.1098/rstb.2011.0099 [Google Scholar]
  64. Taglialatela, J. P., Russell, J. L., Schaeffer, J. A., Hopkins, W. D.
    (2008) Communicative signaling activates “Broca’s” homolog in chimpanzees. Curr Biol18, 343–8.10.1016/j.cub.2008.01.049
    https://doi.org/10.1016/j.cub.2008.01.049 [Google Scholar]
  65. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., Farah, M. J.
    (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U A94, 14792–7.10.1073/pnas.94.26.14792
    https://doi.org/10.1073/pnas.94.26.14792 [Google Scholar]
  66. Toth, N., Schick, K.
    (2009) The Importance of Actualistic Studies in Early Stone Age Research: Some Personal Reflections, in: Schick, K., Toth, N., Toth, N. (Eds.), The Cutting Edge: New Approaches to the Archaeology of Human Origins, Stone Age Institute Publication Series. Stone Age Institute Press, Gosport, IN, pp.267–344.
    [Google Scholar]
  67. Uylings, H. B. M., Van Eden, C. G.
    (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans, in: Uylings, H. B. M., Van Eden, C. G., De Bruin, J. P. C., Corner, M. A., Feenstra, M. G. P. (Eds.), Progress in Brain Research, Vol. 85, Progress in Brain Research. Elsevier Science Publishers, New York, pp.31–62.
    [Google Scholar]
  68. Wilkins, W. K., Wakefield, J.
    (1995) Brains evolution and neurolinguistic preconditions. Behav. Brain Sci.18, 161–182.10.1017/S0140525X00037924
    https://doi.org/10.1017/S0140525X00037924 [Google Scholar]
  69. Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., Petkov, C. I.
    (2015) Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nat. Commun.6, 8901.10.1038/ncomms9901
    https://doi.org/10.1038/ncomms9901 [Google Scholar]
  70. Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., Petkov, C. I.
    (2013) Auditory Artificial Grammar Learning in Macaque and Marmoset Monkeys. J. Neurosci.33, 18825–18835.10.1523/JNEUROSCI.2414‑13.2013
    https://doi.org/10.1523/JNEUROSCI.2414-13.2013 [Google Scholar]
  71. Wilson, S. M., Galantucci, S., Tartaglia, M. C., Rising, K., Patterson, D. K., Henry, M. L., Ogar, J. M., DeLeon, J., Miller, B. L., Gorno-Tempini, M. L.
    (2011) Syntactic Processing Depends on Dorsal Language Tracts. Neuron72, 397–403.10.1016/j.neuron.2011.09.014
    https://doi.org/10.1016/j.neuron.2011.09.014 [Google Scholar]
/content/journals/10.1075/is.17041.sch
Loading
/content/journals/10.1075/is.17041.sch
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error