Volume 18, Issue 2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes


Emotional facial expression are an important communication channel between artificial characters and their users. Humans are trained to perceive emotions. Robots and virtual agents can use them to make their inner states transparent. Literature reported that some emotional types, such as anger, are perceived as being more intense than others. Other studies indicated that gender influences the perception. Our study shows that once the individual differences amongst participants are included in the statistical analysis, then the emotion type has no further explanatory power. Artificial characters therefore should adapt to their specific users.


Article metrics loading...

Loading full text...

Full text loading...


  1. Agresti, A.
    (2010) Analysis of ordinal categorical data. Hoboken, NJ: Wiley. doi: 10.1002/9780470594001
    https://doi.org/10.1002/9780470594001 [Google Scholar]
  2. Bartneck, C. , Obaid, M. , & Zawieska, K.
    (2013) Agents with faces – what can we learn from lego minfigures. In 1st international conference on human-agent interaction (pp.III–2–1). Retrieved fromhai-conference.net/ihai2013/proceedings/pdf/III-2-1.pdf
    [Google Scholar]
  3. Bartneck, C. , & Reichenbach, J.
    (2005) Subtle emotional expressions of synthetic characters. The international Journal of Human-Computer Studies, 62(2), 179–192. doi: 10.1016/j.ijhcs.2004.11.006
    https://doi.org/10.1016/j.ijhcs.2004.11.006 [Google Scholar]
  4. Bartneck, C. , Reichenbach, J. , & Breemen, A.
    (2004) In your face, robot! the influence of a character’s embodiment on how users perceive its emotional ex-pressions. In Proceedings of the design and emotion 2004 conference . Retrieved fromwww.bartneck.de/publications/2004/inYourFaceRobot/bartneckDE2004.pdf
    [Google Scholar]
  5. Biele, C. , & Grabowska, A.
    (2006) Sex differences in perception of emotion intensity in dymanic and static facial expressions. Exp Brain Res, 171, 1–6. doi: 10.1007/s00221‑005‑0254‑0
    https://doi.org/10.1007/s00221-005-0254-0 [Google Scholar]
  6. Breazeal, C.
    (2003) Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59(1–2), 119–155. Retrieved fromwww.sciencedirect.com/science/article/pii/S1071581903000181 (Applications of Affective Computing in Human-Computer Interaction) doi: 10.1016/S1071‑5819(03)00018‑1
    https://doi.org/10.1016/S1071-5819(03)00018-1 [Google Scholar]
  7. Calder, A. J. , Keane, J. , Manly, T. , Sprengelmeyer, R. , Scott, S. , Nimmo-Smith, I. , & Young, A.
    (2003) Facial expression recognition across the adult life span. Neuropsychologia, 41, 195–202. doi: 10.1016/S0028‑3932(02)00149‑5
    https://doi.org/10.1016/S0028-3932(02)00149-5 [Google Scholar]
  8. Calvo, M. G. , & Nummenmaa, L.
    (2016) Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition and Emotion, 30(6), 1081–1106. doi: 10.1080/02699931.2015.1049124
    https://doi.org/10.1080/02699931.2015.1049124 [Google Scholar]
  9. Christensen, R. H. B.
    (2015) ordinal—regression models for ordinal data. (R package version 2015.6–28. www.cran.r-project.org/package=ordinal/)
    [Google Scholar]
  10. Fong, T. , Nourbakhsh, I. , & Dautenhahn, K.
    (2003) A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3–4), 143–166. Retrieved fromwww.sciencedirect.com/science/article/pii/S092188900200372X (Socially Interactive Robots) doi: 10.1016/S0921‑8890(02)00372‑X
    https://doi.org/10.1016/S0921-8890(02)00372-X [Google Scholar]
  11. Hess, U. , Blairy, S. , & Kleck, R. E.
    (1997) The intensity of emotional facial expressions and decoding accuracy. Journal of Nonverbal Behavior, 21(4), 241–257. doi: 10.1023/A:1024952730333
    https://doi.org/10.1023/A:1024952730333 [Google Scholar]
  12. Hwang, J. , Park, T. , & Hwang, W.
    (2013) The effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot. Applied Ergonomics, 44(3), 459–471. Retrieved fromwww.sciencedirect.com/science/article/pii/S0003687012001688. doi: 10.1016/j.apergo.2012.10.010
    https://doi.org/10.1016/j.apergo.2012.10.010 [Google Scholar]
  13. Kamachi, M. , Bruce, V. , Mukaida, S. , Gyoba, J. , Yoshikawa, S. , & Akamatsu, S.
    (2013) Dynamic properties influence the perception of facial expressions. Perception, 42 (11), 1266–1278. Retrieved frompec.sagepub.com/content/42/11/1266.abstract. doi: 10.1068/p3131n
    https://doi.org/10.1068/p3131n [Google Scholar]
  14. Martina Mittlböck, M. , & Shemper, M.
    (1996) Explained variation for logistic regression. Statistics in Medicine, 1987–1997. doi: 10.1002/(SICI)1097‑0258(19961015)15:19<1987::AID‑SIM318>3.0.CO;2‑9
    https://doi.org/10.1002/(SICI)1097-0258(19961015)15:19<1987::AID-SIM318>3.0.CO;2-9 [Google Scholar]
  15. Matsumoto, D. , & Ekman, P.
    (1989) American-japanese cultural differences in intensity ratings of facial expressions of emotion. Motivation and Emotion, 13, 143–157. doi: 10.1007/BF00992959
    https://doi.org/10.1007/BF00992959 [Google Scholar]
  16. McClure, E. B.
    (2000) A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126(3), 424–253. doi: 10.1037/0033‑2909.126.3.424
    https://doi.org/10.1037/0033-2909.126.3.424 [Google Scholar]
  17. McColl, D. , & Nejat, G.
    (2014) Recognizing emotional body language displayed by a human-like social robot. International Journal of Social Robotics, 6(2), 261–280. doi: 10.1007/s12369‑013‑0226‑7
    https://doi.org/10.1007/s12369-013-0226-7 [Google Scholar]
  18. Menard, S.
    (2000) Coefficients of determination for multiple logistic regression analysis. The American Statistician, 17–24.
    [Google Scholar]
  19. R. Core Team
    (2014) R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved fromwww.R-project.org/
  20. Rapcsak, S. , Galper, S. , Comer, J. , Reminger, S. , Nielsen, L. , & Kaszniak, A.
    (2000) Fear recognition deficits after focal brain damage—a cautionary note. Neurology, 54, 575–581. doi: 10.1212/WNL.54.3.575
    https://doi.org/10.1212/WNL.54.3.575 [Google Scholar]
  21. Russel, J. A.
    (1994) Is there universal recognition of emotion from facial expression? a review of the cross-cultural studies. Psychological Bulletin, 115, 102–141. doi: 10.1037/0033‑2909.115.1.102
    https://doi.org/10.1037/0033-2909.115.1.102 [Google Scholar]
  22. Sonnemans, J. , & Frijda, N.
    (1994) The structure of subjective emotional intensity. Cognition and Emotion, 8, 329–350. doi: 10.1080/02699939408408945
    https://doi.org/10.1080/02699939408408945 [Google Scholar]
  23. Sonnemans, J. , & Frijda, N. H.
    (1995) The determinants of subjective emotional intensity. Cognition and Emotion, 9, 483–506. doi: 10.1080/02699939508408977
    https://doi.org/10.1080/02699939508408977 [Google Scholar]
  24. Suzuki, A. , Hoshino, T. , & Shigemasu, K.
    (2006) Measuring individual differences in sensitivities to basic emotions in faces. Cognition99, 327–353. doi: 10.1016/j.cognition.2005.04.003
    https://doi.org/10.1016/j.cognition.2005.04.003 [Google Scholar]
  25. Wilhelm, O. , Hildebrandt, A. , Manske, K. , Schacht, A. , & Sommer, W.
    (2014) Test battery for measuring the perception and recognition of facial expressions of emotion. Frontiers in Psychology, 5, 404. Retrieved fromjournal.frontiersin.org/article/10.3389/fpsyg.2014.00404. doi: 10.3389/fpsyg.2014.00404
    https://doi.org/10.3389/fpsyg.2014.00404 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): differences; emotion; expression; gender; individual
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error