Volume 18, Issue 3
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes


In language evolution research, the use of computational and experimental methods to investigate the emergence of structure in language is exploding. In this review, we look exclusively at work exploring the emergence of structure in speech, on both a categorical level (what drives the emergence of an inventory of individual speech sounds), and a combinatorial level (how these individual speech sounds emerge and are reused as part of larger structures). We show that computational and experimental methods for investigating population-level processes can be effectively used to explore and measure the effects of learning, communication and transmission on the emergence of structure in speech. We also look at work on child language acquisition as a tool for generating and validating hypotheses for the emergence of speech categories. Further, we review the effects of noise, iconicity and production effects.


Article metrics loading...

Loading full text...

Full text loading...


  1. Anthony, J. L. , & Francis, D. J.
    (2005) Development of phonological awareness. Current Directions in Psychological Science, 14(5): 255–259. doi: 10.1111/j.0963‑7214.2005.00376.x
    https://doi.org/10.1111/j.0963-7214.2005.00376.x [Google Scholar]
  2. Blevins, J.
    (2004) Evolutionary phonology. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511486357
    https://doi.org/10.1017/CBO9780511486357 [Google Scholar]
  3. Carr, J. W. , Smith, K. , Cornish, H. , & Kirby, S.
    (2016) The cultural evolution of structured languages in an open‐ended, continuous world. Cognitive Science. doi: 10.1111/cogs.12371
    https://doi.org/10.1111/cogs.12371 [Google Scholar]
  4. Carré, R.
    (1996) Prediction of vowel systems using a deductive approach. In H. T. Bunnell & W. Idsardi (Eds.), Proceedings of Fourth International Conference on Spoken Language Processing. ICSLP ’96 (pp.1593–1597). IEEE. doi: 10.1109/ICSLP.1996.607925
    https://doi.org/10.1109/ICSLP.1996.607925 [Google Scholar]
  5. Caselli, N. , Ergin, R. , Jackendoff, R. , & Cohen-Goldberg, A.
    (2014) The emergence of phonological structure in central taurus sign language. From Sound to Gesture , Padua, Italy.
    [Google Scholar]
  6. de Boer, B.
    (2000) Emergence of sound systems through self-organisation. In C. Knight , M. Studdert- Kennedy , & J. R. Hurford (Eds.), The evolutionary emergence of language: Social function and the origins of linguistic form (pp.177–198). New York: Cambridge University Press. doi: 10.1017/CBO9780511606441.012
    https://doi.org/10.1017/CBO9780511606441.012 [Google Scholar]
  7. de Boer, B. , & Kuhl, P. K.
    (2003) Investigating the role of infant-directed speech with a computer model. Acoustics Research Letters Online: ARLO, 4, 129–134. doi: 10.1121/1.1613311
    https://doi.org/10.1121/1.1613311 [Google Scholar]
  8. de Boer, B. , Sandler, W. , & Kirby, S.
    (2012) New perspectives on duality of patterning: Introduction to the special issue. Language and Cognition, 4(4), 251–259. doi: 10.1515/langcog‑2012‑0014
    https://doi.org/10.1515/langcog-2012-0014 [Google Scholar]
  9. de Boer, B. , & Verhoef, T.
    (2012) Language dynamics in structured form and meaning spaces. Advances in Complex Systems. A Multidisciplinary Journal, 15(3), 1150021–1–1150021–20.
    [Google Scholar]
  10. Del Giudice, A.
    (2012) The emergence of duality of patterning through iterated learning: Precursors to phonology in a visual lexicon. Language and Cognition, 4(4), 381–418. doi: 10.1515/langcog‑2012‑0020
    https://doi.org/10.1515/langcog-2012-0020 [Google Scholar]
  11. Eryılmaz, K. , & Little, H.
    (2016) Using leap motion to investigate the emergence of structure in speech and language. Behavioral Research Methods. doi: 10.3758/s13428‑016‑0818‑x
    https://doi.org/10.3758/s13428-016-0818-x [Google Scholar]
  12. Feldman, N. H. , Griffiths, T. L. , & Morgan, J. L.
    (2009) Learning phonetic categories by learning a lexicon. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the cognitive science society (CogSci 2009) (pp.2208–2213).
    [Google Scholar]
  13. Feldman, N. H. , Myers, E. B. , White, K. S. , Griffiths, T. L. , & Morgan, J. L.
    (2013) Word-level information influences phonetic learning in adults and infants. Cognition, 127(3), 427–438. doi: 10.1016/j.cognition.2013.02.007
    https://doi.org/10.1016/j.cognition.2013.02.007 [Google Scholar]
  14. Fitch, W. T.
    (2000) The evolution of speech: A comparative review. Trends in Cognitive Sciences, 4(7), 258–267. doi: 10.1016/S1364‑6613(00)01494‑7
    https://doi.org/10.1016/S1364-6613(00)01494-7 [Google Scholar]
  15. François, C. , Cunillera, T. , Garcia, E. , Laine, M. , & Rodriguez-Fornells, A.
    (2016) Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping during novel word learning. Neuropsychologia.
    [Google Scholar]
  16. Galantucci, B.
    (2005) An experimental study of the emergence of human communication systems. Cognitive Science, 29(5), 737–767. doi: 10.1207/s15516709cog0000_34
    https://doi.org/10.1207/s15516709cog0000_34 [Google Scholar]
  17. Galantucci, B. , Kroos, C. , & Rhodes, T.
    (2010) The effects of rapidity of fading on communication systems. Interaction Studies, 11(1), 100–111. doi: 10.1075/is.11.1.03gal
    https://doi.org/10.1075/is.11.1.03gal [Google Scholar]
  18. Goldin-Meadow, S. , & McNeill, D.
    (1999) The role of gesture and mimetic representation in making language the province of speech. In M. C. Corballis & S. Lea (Eds.), Evolution of the Hominid Mind (pp.155–172). Oxford: Oxford University Press.
    [Google Scholar]
  19. Goldstein, M. H. , King, A. P. , & West, M. J.
    (2003) Social interaction shapes babbling: Testing parallels between birdsong and speech. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 8030–8035. doi: 10.1073/pnas.1332441100
    https://doi.org/10.1073/pnas.1332441100 [Google Scholar]
  20. Goldstein, M. H. , & Schwade, J. A.
    (2008) Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19(5), 515–523. doi: 10.1111/j.1467‑9280.2008.02117.x
    https://doi.org/10.1111/j.1467-9280.2008.02117.x [Google Scholar]
  21. Gros-Louis, J. , West, M. J. , Goldstein, M. H. , & King, A. P.
    (2006) Mothers provide differential feedback to infants’ prelinguistic sounds. International Journal of Behavioral Development, 30(6), 509–516. doi: 10.1177/0165025406071914
    https://doi.org/10.1177/0165025406071914 [Google Scholar]
  22. Hockett, C. F.
    (1960) The origin of speech. Scientific American, 203, 88–111. doi: 10.1038/scientificamerican0960‑88
    https://doi.org/10.1038/scientificamerican0960-88 [Google Scholar]
  23. Howard, I. S. , & Messum, P.
    (2011) Modeling the development of pronunciation in infant speech acquisition. Motor Control, 15(1), 85–117. doi: 10.1123/mcj.15.1.85
    https://doi.org/10.1123/mcj.15.1.85 [Google Scholar]
  24. Jones, S. S.
    (2009) The development of imitation in infancy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1528), 2325–2335. doi: 10.1098/rstb.2009.0045
    https://doi.org/10.1098/rstb.2009.0045 [Google Scholar]
  25. Keshet, J. , Shalev-Shwartz, S. , Singer, Y. , & Chazan, D.
    (2005) Phoneme alignment based on discriminative learning. In Proceedings of Interspeech 2005 (pp.2961–2964).
    [Google Scholar]
  26. Kirby, J. , & Sonderegger, M.
    (2015) Bias and population structure in the actuation of sound change. arXiv:1507.04420 [physics].
  27. Kirby, S.
    (2002b) Natural language from artificial life. Artificial Life, 8(2), 185–215. doi: 10.1162/106454602320184248
    https://doi.org/10.1162/106454602320184248 [Google Scholar]
  28. Kirby, S. , Cornish, H. , & Smith, K.
    (2008) Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences, 105(31), 10681–10686. doi: 10.1073/pnas.0707835105
    https://doi.org/10.1073/pnas.0707835105 [Google Scholar]
  29. Kirby, S. , Tamariz, M. , Cornish, H. , & Smith, K.
    (2015) Compression and communication in the cultural evolution of linguistic structure. Cognition, 141, 87–102. doi: 10.1016/j.cognition.2015.03.016
    https://doi.org/10.1016/j.cognition.2015.03.016 [Google Scholar]
  30. Kokkinaki, T. , & Kugiumutzakis, G.
    (2000) Basic aspects of vocal imitation in infant-parent interaction during the first 6 months. Journal of Reproductive and Infant Psychology, 18(3), 173–187. doi: 10.1080/713683042
    https://doi.org/10.1080/713683042 [Google Scholar]
  31. Kokkinaki, T. , & Vitalaki, E.
    (2013) Comparing spontaneous imitation in grandmother-infant and mother-infant interaction: A three generation familial study. International Journal of Aging & Human Development, 77(2), 77–105. doi: 10.2190/AG.77.2.a
    https://doi.org/10.2190/AG.77.2.a [Google Scholar]
  32. Lee, C.-Y. , & Glass, J.
    (2012) A nonparametric Bayesian approach to acoustic model discovery. InProceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers (Vol. 1, pp.40–49). Stroudsburg, PA: Association for Computational Linguistics.
    [Google Scholar]
  33. Liljencrants, J. , & Lindblom, B.
    (1972) Numerical simulation of vowel quality systems: The role of perceptual contrast. Language, 48(4), 839–862. doi: 10.2307/411991
    https://doi.org/10.2307/411991 [Google Scholar]
  34. Lindblom, B. , Macneilage, P. , & Studdert-Kennedy, M.
    (1984) Self-organizing processes and the explanation of phonological universals. In B. Butterworth , B. Comrie , & Ö. Dahl (Eds.), Explanations for language universals (pp.181–204). The Hague: De Gruyter. doi: 10.1515/9783110868555.181
    https://doi.org/10.1515/9783110868555.181 [Google Scholar]
  35. Little, H. , & de Boer, B.
    (2014) The effect of size of articulation space on the emergence of combinatorial structure. In A. Cartmill Erica , S. Roberts , H. Lyn , & H. Cornish (Eds.), The Evolution of Language: Proceedings of the 10th international conference (EVOLANGX) (pp.479–481). Singapore: World Scientific. doi: 10.1142/9789814603638_0103
    https://doi.org/10.1142/9789814603638_0103 [Google Scholar]
  36. Little, H. , & Eryılmaz, K.
    (2016) Using leap motion to investigate the emergence of structure in speech and language. Behaviour Research Methods. doi: 10.3758/s13428‑016‑0818‑x
    https://doi.org/10.3758/s13428-016-0818-x [Google Scholar]
  37. Little, H. , Eryılmaz, K. , & de Boer, B.
    (2017) Signal dimensionality and the emergence of combinatorial structure. Cognition168, 1–15.
    [Google Scholar]
  38. (2015) Linguistic modality affects the creation of structure and iconicity in signals. In D. C. Noelle , R. Dale , A. S. Warlaumont , J. Yoshimi , T. Matlock , C. D. Jennings , & P. P. Maglio (Eds.), The 37th annual meeting of the Cognitive Science Society (CogSci 2015) (pp.1392–1398). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  39. (2016) Differing Signal-meaning Dimensionalities Facilitates The Emergence Of Structure. In S. G. Roberts , C. Cuskley , L. McCrohon , L. Barceló-Coblijn , O. Feher , & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANGX1) (pp.182–190).
    [Google Scholar]
  40. Majorano, M. , Vihman, M. M. , & DePaolis, R. A.
    (2014) The relationship between infants’ production experience and their processing of speech. Language Learning and Development, 10(2), 179–204. doi: 10.1080/15475441.2013.829740
    https://doi.org/10.1080/15475441.2013.829740 [Google Scholar]
  41. Martin, A. , Peperkamp, S. , & Dupoux, E.
    (2013) Learning phonemes with a proto-lexicon. Cognitive Science, 37(1), 103–124. doi: 10.1111/j.1551‑6709.2012.01267.x
    https://doi.org/10.1111/j.1551-6709.2012.01267.x [Google Scholar]
  42. Masur, E. , & Rodemaker, J. E.
    (1999) Mothers’ and infants' spontaneous vocal, verbal, and action imitation during the second year. Merrill-Palmer Quarterly, 45(3), 392–412.
    [Google Scholar]
  43. Matthews, C.
    (2009) The emergence of categorization: Language transmission in an Iterated Learning Model using a continuous meaning space (MSc Thesis). University of Edinburgh.
    [Google Scholar]
  44. McDonough, J. , Ladefoged, P. , & George, H.
    (1992) Navajo vowels and universal phonetic tendencies. The Journal of the Acoustical Society of America, 92(4), 2416. doi: 10.1121/1.404686
    https://doi.org/10.1121/1.404686 [Google Scholar]
  45. Mitterer, H. , Scharenborg, O. , & McQueen, J. M.
    (2013) Phonological abstraction without phonemes in speech perception. Cognition, 129(2), 356–361. doi: 10.1016/j.cognition.2013.07.011
    https://doi.org/10.1016/j.cognition.2013.07.011 [Google Scholar]
  46. Miura, K. , Katsushi, M. , Yuichiro, Y. , & Minoru, A.
    (2008) Realizing being imitated: Vowel mapping with clearer articulation. In 2008 7th IEEE International Conference on Development and Learning (pp.262–267). doi: 10.1109/devlrn.2008.4640840
    https://doi.org/10.1109/devlrn.2008.4640840 [Google Scholar]
  47. Miura, K. , Yoshikawa, Y. , & Asada, M.
    (2007) Unconscious anchoring in maternal imitation that helps find the correspondence of a caregiver’s vowel categories. Advanced Robotics: The International Journal of the Robotics Society of Japan, 21(13), 1583–1600.
    [Google Scholar]
  48. Oudeyer, P. Y.
    (2005) How phonological structures can be culturally selected for learnability. Adaptive Behavior, 13(4), 269–280. doi: 10.1177/105971230501300407
    https://doi.org/10.1177/105971230501300407 [Google Scholar]
  49. Pawlby, S. J.
    (1977) Imitative interaction. In H. Schaffer (Ed.), Studies in mother-infant interaction (pp.203–224). New York: Academic Press.
    [Google Scholar]
  50. Rasilo, H. , & Räsänen, O.
    (2017) An online model for vowel imitation learning. Speech Communication, 86, 1–23. doi: 10.1016/j.specom.2016.10.010
    https://doi.org/10.1016/j.specom.2016.10.010 [Google Scholar]
  51. Reinisch, E. , Wozny, D. R. , Mitterer, H. , & Holt, L. L.
    (2014) Phonetic category recalibration: What are the categories?Journal of Phonetics, 45, 91–105. doi: 10.1016/j.wocn.2014.04.002
    https://doi.org/10.1016/j.wocn.2014.04.002 [Google Scholar]
  52. Räsänen, O.
    (2012) Computational modeling of phonetic and lexical learning in early language acquisition: Existing models and future directions. Speech Communication, 54(9), 975–997. doi: 10.1016/j.specom.2012.05.001
    https://doi.org/10.1016/j.specom.2012.05.001 [Google Scholar]
  53. Räsänen, O. , & Rasilo, H.
    (2015) A joint model of word segmentation and meaning acquisition through cross-situational learning. Psychological Review, 122(4), 792–829. doi: 10.1037/a0039702
    https://doi.org/10.1037/a0039702 [Google Scholar]
  54. Roberts, G. , & Galantucci, B.
    (2012) The emergence of duality of patterning: Insights from the laboratory. Language and Cognition, 4(4), 297–318. doi: 10.1515/langcog‑2012‑0017
    https://doi.org/10.1515/langcog-2012-0017 [Google Scholar]
  55. Roberts, G. , Lewandowski, J. , & Galantucci, B.
    (2015) How communication changes when we cannot mime the world: Experimental evidence for the effect of iconicity on combinatoriality. Cognition, 141, 52–66. doi: 10.1016/j.cognition.2015.04.001
    https://doi.org/10.1016/j.cognition.2015.04.001 [Google Scholar]
  56. Sachs, J. , Bard, B. , & Johnson, M. L.
    (1981) Language learning with restricted input: Case studies of two hearing children of deaf parents. Applied Psycholinguistics, 2(1), 33–54. doi: 10.1017/S0142716400000643
    https://doi.org/10.1017/S0142716400000643 [Google Scholar]
  57. Saffran, J. R.
    (2003) Statistical language learning mechanisms and constraints. Current Directions in Psychological Science, 12(4), 110–114. doi: 10.1111/1467‑8721.01243
    https://doi.org/10.1111/1467-8721.01243 [Google Scholar]
  58. Sandler, W. , Aronoff, M. , Meir, I. , & Padden, C.
    (2011) The gradual emergence of phonological form in a new language. Natural Language & Linguistic Theory, 29(2), 503–543. doi: 10.1007/s11049‑011‑9128‑2
    https://doi.org/10.1007/s11049-011-9128-2 [Google Scholar]
  59. Scharenborg, O. , Wan, V. , & Ernestus, M.
    (2010) Unsupervised speech segmentation: An analysis of the hypothesized phone boundaries. The Journal of the Acoustical Society of America, 127(2), 1084–1095. doi: 10.1121/1.3277194
    https://doi.org/10.1121/1.3277194 [Google Scholar]
  60. Shannon, C. E.
    (2001) A mathematical theory of communication. ACM Sigmobile Mobile Computing and Communications Review, 5(1), 3–55. doi: 10.1145/584091.584093
    https://doi.org/10.1145/584091.584093 [Google Scholar]
  61. Silvey, C. , Kirby, S. , & Smith, K.
    (2013) Communication leads to the emergence of sub-optimal category structures. In M. Knauff , M. Pauen , N. Sebanz , & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the Cognitive Science Society (pp.1312–1317). Austin, TX: Cognitive Science Society.
    [Google Scholar]
  62. Silvey, C. , Flaherty, M. , Goldin-Meadow, S. , Kirby, S. , & Smith, K.
    (2016) Communication without a language model inhibits the emergence of systematic structure. In S. G. Roberts , C. Cuskley , L. McCrohon , L. Barceló-Coblijn , O. Feher , & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANGXI) . doi: 10.17617/2.2248195
    https://doi.org/10.17617/2.2248195 [Google Scholar]
  63. Smith, A. , & Zelaznik, H. N.
    (2004) Development of functional synergies for speech motor coordination in childhood and adolescence. Developmental Psychobiology, 45(1), 22–33. doi: 10.1002/dev.20009
    https://doi.org/10.1002/dev.20009 [Google Scholar]
  64. Swingley, D.
    (2009) Contributions of infant word learning to language development. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1536), 3617–3632. doi: 10.1098/rstb.2009.0107
    https://doi.org/10.1098/rstb.2009.0107 [Google Scholar]
  65. Tardif, T. , Fletcher, P. , Liang, W. , Zhang, Z. , Kaciroti, N. , & Marchman, V. A.
    (2008) Baby’s first 10 words. Developmental Psychology, 44(4), 929–938. doi: 10.1037/0012‑1649.44.4.929
    https://doi.org/10.1037/0012-1649.44.4.929 [Google Scholar]
  66. Teinonen, T. , Aslin, R. N. , Alku, P. , & Csibra, G.
    (2008) Visual speech contributes to phonetic learning in 6-month-old infants. Cognition, 108(3), 850–855. doi: 10.1016/j.cognition.2008.05.009
    https://doi.org/10.1016/j.cognition.2008.05.009 [Google Scholar]
  67. ten Bosch, L.
    (1995) Lexically-Based vowel dispersion: A case study for Dutch. Proceedings of the Institute of Phonetic Sciences , University of Amsterdam, 19, 39–50.
    [Google Scholar]
  68. ter Schure, S. M. M. , Junge, C. M. M. , & Boersma, P. P. G.
    (2016) Semantics guide infants’ vowel learning: Computational and experimental evidence. Infant Behavior & Development, 43, 44–57. doi: 10.1016/j.infbeh.2016.01.002
    https://doi.org/10.1016/j.infbeh.2016.01.002 [Google Scholar]
  69. Thiessen, E. D.
    (2007) The effect of distributional information on children’s use of phonemic contrasts. Journal of Memory and Language, 56(1), 16–34. doi: 10.1016/j.jml.2006.07.002
    https://doi.org/10.1016/j.jml.2006.07.002 [Google Scholar]
  70. (2011) When variability matters more than meaning: The effect of lexical forms on use of phonemic contrasts. Developmental Psychology, 47(5), 1448–1458. doi: 10.1037/a0024439
    https://doi.org/10.1037/a0024439 [Google Scholar]
  71. Tria, F. , Galantucci, B. , & Loreto, V.
    (2012) Naming a structured world: A cultural route to duality of patterning. PloS One, 7(6), e37744. doi: 10.1371/journal.pone.0037744
    https://doi.org/10.1371/journal.pone.0037744 [Google Scholar]
  72. Vallabha, G. K. , McClelland, J. L. , Pons, F. , Werker, J. F. , & Amano, S.
    (2007) Unsupervised learning of vowel categories from infant-directed speech. Proceedings of the National Academy of Sciences, 104(33), 13273–13278. doi: 10.1073/pnas.0705369104
    https://doi.org/10.1073/pnas.0705369104 [Google Scholar]
  73. van der Ham, S. , & de Boer, B.
    (2015) Cognitive bias for learning speech sounds from a continuous signal space seems nonlinguistic. I-Perception, 6(5), 2041669515593019. doi: 10.1177/2041669515593019
    https://doi.org/10.1177/2041669515593019 [Google Scholar]
  74. Varadarajan, B. , Khundapur, S. , & Dupoux, E.
    (2008) Unsupervised learning of acoustic sub-word units. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies Short Papers - HLT ’08 (pp.165–168). Ohio, USA. doi: 10.3115/1557690.1557736
    https://doi.org/10.3115/1557690.1557736 [Google Scholar]
  75. Vaux, B. , & Samuels, B.
    (2015) Explaining vowel systems: dispersion theory vs natural selection. The Linguistic Review, 32(3). doi: 10.1515/tlr‑2014‑0028
    https://doi.org/10.1515/tlr-2014-0028 [Google Scholar]
  76. Verhoef, T.
    (2012) The origins of duality of patterning in artificial whistled languages. Language and Cognition, 4(4), 357–380. doi: 10.1515/langcog‑2012‑0019
    https://doi.org/10.1515/langcog-2012-0019 [Google Scholar]
  77. Verhoef, T. , Kirby, S. , & de Boer, B.
    (2014) Emergence of combinatorial structure and economy through iterated learning with continuous acoustic signals. Journal of Phonetics, 43(1), 57–68. doi: 10.1016/j.wocn.2014.02.005
    https://doi.org/10.1016/j.wocn.2014.02.005 [Google Scholar]
  78. (2015) Iconicity and the Emergence of Combinatorial Structure in Language. Cognitive Science. doi: 10.1111/cogs.12326
    https://doi.org/10.1111/cogs.12326 [Google Scholar]
  79. Walsh, B. , Smith, A. , & Weber-Fox, C.
    (2006) Short-term plasticity in children’s speech motor systems. Developmental Psychobiology, 48(8), 660–674. doi: 10.1002/dev.20185
    https://doi.org/10.1002/dev.20185 [Google Scholar]
  80. Wedel, A. , Kaplan, A. , & Jackson, S.
    (2013) High functional load inhibits phonological contrast loss: A corpus study. Cognition, 128(2), 179–186. doi: 10.1016/j.cognition.2013.03.002
    https://doi.org/10.1016/j.cognition.2013.03.002 [Google Scholar]
  81. Yeung, H. H. , & Werker, J. F.
    (2009) Learning words’ sounds before learning how words sound: 9-month-olds use distinct objects as cues to categorize speech information. Cognition, 113(2), 234–243. doi: 10.1016/j.cognition.2009.08.010
    https://doi.org/10.1016/j.cognition.2009.08.010 [Google Scholar]
  82. Zuidema, W. , & Boer, B. D.
    (2009) The evolution of combinatorial phonology. Journal of Phonetics, 37(2), 125–144 doi: 10.1016/j.wocn.2008.10.003
    https://doi.org/10.1016/j.wocn.2008.10.003 [Google Scholar]
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error