Volume 20, Issue 2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes



Previous research has shown that the perception that one’s partner is investing effort in a joint action can generate a sense of commitment, leading participants to persist longer despite increasing boredom. The current research extends this finding to human-robot interaction. We implemented a 2-player version of the classic snake game which became increasingly boring over the course of each round, and operationalized commitment in terms of how long participants persisted before pressing a ‘finish’ button to conclude each round. Participants were informed that they would be linked via internet with their partner, a humanoid robot. Our results reveal that participants persisted longer when they perceived what they believed to be cues of their robot partner’s effortful contribution to the joint action. This provides evidence that the perception of a robot partner’s effort can elicit a sense of commitment to human-robot interaction.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bainbridge, W. A., Hart, J., Kim, E. S., & Scassellati, B.
    (2008, August). The effect of presence on human-robot interaction. InRobot and Human Interactive Communication 2008 RO-MAN 2008 The 17th IEEE International Symposium on (pp.701–706). IEEE.
    [Google Scholar]
  2. Breazeal, C., Brooks, A., Gray, J., Hoffman, G., Kidd, C., Lee, H., … & Mulanda, D.
    (2004) Humanoid robots as cooperative partners for people. Int. Journal of Humanoid Robots, 1(2), 1–34.
    [Google Scholar]
  3. Brooks, D. J., Begum, M., and Yanco, H. A.
    (2016) “Analysis of reactions towards failures and recovery strategies for autonomous robots,” inProceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2016) (New York, NY: IEEE), 487–492.
    [Google Scholar]
  4. Chennells, M., Michael, J.
    (2018) Effort and performance in a cooperative activity are boosted by the perception of a partner’s effort, Nature: Scientific Reports (2018) 8:15692 | doi:  10.1038/s41598‑018‑34096‑1
    https://doi.org/10.1038/s41598-018-34096-1 [Google Scholar]
  5. Clodic, A., Cao, H., Alili, S., Montreuil, V., Alami, R., & Chatila, R.
    (2009) Shary: a supervision system adapted to human-robot interaction. InExperimental Robotics (pp.229–238). Springer Berlin/Heidelberg. 10.1007/978‑3‑642‑00196‑3_27
    https://doi.org/10.1007/978-3-642-00196-3_27 [Google Scholar]
  6. Clodic, A., Fleury, S., Alami, R., Chatila, R., Bailly, G., Brethes, L.
    , …others (2006) Rackham: An interactive robot-guide. InROMAN 2006-the 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield (pp.502–509). 10.1109/ROMAN.2006.314378
    https://doi.org/10.1109/ROMAN.2006.314378 [Google Scholar]
  7. Cousineau, D.
    (2005) Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45. 10.20982/tqmp.01.1.p042
    https://doi.org/10.20982/tqmp.01.1.p042 [Google Scholar]
  8. Cully, A., Clune, J., Tarapore, D., & Mouret, J. B.
    (2015) Robots that can adapt like animals. Nature, 521(7553), 503–507. 10.1038/nature14422
    https://doi.org/10.1038/nature14422 [Google Scholar]
  9. DeSteno, D., Breazeal, C., Frank, R. H., Pizarro, D., Baumann, J., Dickens, L., & Lee, J. J.
    (2012) Detecting the trustworthiness of novel partners in economic exchange. Psychological science, 23(12), 1549–1556. 10.1177/0956797612448793
    https://doi.org/10.1177/0956797612448793 [Google Scholar]
  10. Dragan, A. D., Lee, K. C., & Srinivasa, S. S.
    (2013, March). Legibility and predictability of robot motion. InHuman-Robot Interaction (HRI), 2013 8th ACM/IEEE International Conference on (pp.301–308). IEEE.
    [Google Scholar]
  11. Fasola, J., and Matarić, M. J.
    A socially assistive robot exercise coach for the elderly. Journal of Human-Robot Interaction2.2 (2013): 3–32. 10.5898/JHRI.2.2.Fasola
    https://doi.org/10.5898/JHRI.2.2.Fasola [Google Scholar]
  12. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G.
    (2009) Statistical power analyses using G∗ Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. 10.3758/BRM.41.4.1149
    https://doi.org/10.3758/BRM.41.4.1149 [Google Scholar]
  13. Feltz, D. L., Forlenza, S. T., Winn, B., & Kerr, N. L.
    (2014) Cyber buddy is better than no buddy: A test of the Köhler motivation effect in exergames. GAMES FOR HEALTH: Research, Development, and Clinical Applications, 3(2), 98–105. 10.1089/g4h.2013.0088
    https://doi.org/10.1089/g4h.2013.0088 [Google Scholar]
  14. Ferrari, F., Eyssel, F.
    2016 Toward a Hybrid Society. In: Springer Handbook of Robotics. Springer International Publishing, p.909–918.
    [Google Scholar]
  15. Fischer, K.
    (2011) How people talk with robots: Designing dialog to reduce user uncertainty. AI Magazine, 32(4), 31–38. 10.1609/aimag.v32i4.2377
    https://doi.org/10.1609/aimag.v32i4.2377 [Google Scholar]
  16. Grigore, E. C., Eder, K., Pipe, A. G., Melhuish, C., & Leonards, U.
    (2013, November). Joint action understanding improves robot-to-human object handover. InIntelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on (pp.4622–4629). IEEE. 10.1109/IROS.2013.6697021
    https://doi.org/10.1109/IROS.2013.6697021 [Google Scholar]
  17. Hamacher, A., Bianchi-Berthouze, N., Pipe, A. G., & Eder, K.
    (2016, August). Believing in BERT: Using expressive communication to enhance trust and counteract operational error in physical Human-Robot Interaction. InRobot and Human Interactive Communication (RO-MAN), 2016 25th IEEE International Symposium on (pp.493–500). IEEE.
    [Google Scholar]
  18. Kahn Jr, P. H., Kanda, T., Ishiguro, H., Freier, N. G., Severson, R. L., Gill, B. T., … & Shen, S.
    (2012) “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Developmental psychology, 48(2), 303. 10.1037/a0027033
    https://doi.org/10.1037/a0027033 [Google Scholar]
  19. Lee, M. K., Kiesler, S., Forlizzi, J.
    Receptionist or information 
kiosk: How do people talk with a robot?Presented at theConference on Computer-Supported Cooperative Work, New York, 2010. 10.1145/1718918.1718927
    https://doi.org/10.1145/1718918.1718927 [Google Scholar]
  20. Lee, J. J., Knox, B., Baumann, J., Breazeal, C., & DeSteno, D.
    (2013) Computationally modeling interpersonal trust. Frontiers in psychology, 4, 893. 10.3389/fpsyg.2013.00893
    https://doi.org/10.3389/fpsyg.2013.00893 [Google Scholar]
  21. Lenz, C., Nair, S., Rickert, M., Knoll, A., Rosel, W., Gast, J., … & Wallhoff, F.
    (2008, August). Joint-action for humans and industrial robots for assembly tasks. InRobot and Human Interactive Communication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on (pp.130–135). IEEE. 10.1109/ROMAN.2008.4600655
    https://doi.org/10.1109/ROMAN.2008.4600655 [Google Scholar]
  22. Loftus, G. R., & Masson, M. E.
    (1994) Using confidence intervals in within-subject designs. Psychonomic bulletin & review, 1(4), 476–490. 10.3758/BF03210951
    https://doi.org/10.3758/BF03210951 [Google Scholar]
  23. Michael, J., & Salice, A.
    (2017) The Sense of Commitment in Human–Robot Interaction. International journal of social robotics, 9(5), 755–763. 10.1007/s12369‑016‑0376‑5
    https://doi.org/10.1007/s12369-016-0376-5 [Google Scholar]
  24. Michael, J., Sebanz, N., & Knoblich, G.
    (2015) The sense of commitment: A minimal approach. Frontiers in psychology, 6 1968.
    [Google Scholar]
  25. (2016) Observing joint action: Coordination creates commitment. Cognition, 157, 106–113. 10.1016/j.cognition.2016.08.024
    https://doi.org/10.1016/j.cognition.2016.08.024 [Google Scholar]
  26. Mirnig, N., Stollnberger, G., Miksch, M., Stadler, S., Giuliani, M., & Tscheligi, M.
    (2017) To err is robot: How humans assess and act toward an erroneous social robot. Frontiers in Robotics and AI, 4, 21.
    [Google Scholar]
  27. Palinko, O., Sciutti, A., Wakita, Y., Matsumoto, Y., & Sandini, G.
    (2016, November). If looks could kill: Humanoid robots play a gaze-based social game with humans. InHumanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on (pp.905–910). IEEE. 10.1109/HUMANOIDS.2016.7803380
    https://doi.org/10.1109/HUMANOIDS.2016.7803380 [Google Scholar]
  28. Peirce, J. W.
    (2007) PsychoPy – Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. 10.1016/j.jneumeth.2006.11.017
    https://doi.org/10.1016/j.jneumeth.2006.11.017 [Google Scholar]
  29. Schneider, S. & Kümmert, F.
    Exercising with a humanoid companion are more effective than exercising alone, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun 2016, pp.495–501. 10.1109/HUMANOIDS.2016.7803321
    https://doi.org/10.1109/HUMANOIDS.2016.7803321 [Google Scholar]
  30. Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., & Sandini, G.
    (2012) Anticipatory gaze in human-robot interactions. InGaze in HRI from modeling to communication” workshop at the 7th ACM/IEEE international conference on human-robot interaction, Boston, Massachusetts, USA.
    [Google Scholar]
  31. (2013) Robots can be perceived as goal-oriented agents. Interaction Studies, 14(3), 329–350.
    [Google Scholar]
  32. Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., Pozzo, T., & Sandini, G.
    (2012) Measuring human-robot interaction through motor resonance. International Journal of Social Robotics, 4(3), 223–234. 10.1007/s12369‑012‑0143‑1
    https://doi.org/10.1007/s12369-012-0143-1 [Google Scholar]
  33. Sciutti, A., Schillingmann, L., Palinko, O., Nagai, Y., & Sandini, G.
    (2015, March). A gaze-contingent dictating robot to study turn-taking. InProceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts (pp.137–138). ACM.
    [Google Scholar]
  34. Sebanz, N., Knoblich, G., & Prinz, W.
    (2003) Representing others’ actions: Just like one’s own?Cognition, 88, B11–B21. doi:  10.1016/S0010‑0277(03)00043‑X
    https://doi.org/10.1016/S0010-0277(03)00043-X [Google Scholar]
  35. Stenzel, A., Chinellato, E., Bou, M. A. T., del Pobil, Á. P., Lappe, M., & Liepelt, R.
    (2012) When humanoid robots become human-like interaction partners: corepresentation of robotic actions. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1073.
    [Google Scholar]
  36. Stulp, F., Grizou, J., Busch, B., & Lopes, M.
    (2015, September). Facilitating intention prediction for humans by optimizing robot motions. InIntelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (pp.1249–1255). IEEE. 10.1109/IROS.2015.7353529
    https://doi.org/10.1109/IROS.2015.7353529 [Google Scholar]
  37. Székely, M., & Michael, J.
    (2018) Investing in commitment: Persistence in a joint action is enhanced by the perception of a partner’s effort. Cognition, 174, 37–42. 10.1016/j.cognition.2018.01.012
    https://doi.org/10.1016/j.cognition.2018.01.012 [Google Scholar]
  38. Wainer, J., Feil-Seifer, D. J., Shell, D. A., & Mataric, M. J.
    (2006, September). The role of physical embodiment in human-robot interaction. InRobot and Human Interactive Communication 2006 ROMAN 2006. The 15th IEEE International Symposium on (pp.117–122). IEEE.
    [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): commitment; effort; human-robot interaction; joint action

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error