1887
Volume 20, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381

Abstract

Abstract

This paper presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, finishing, deburring, etc. The proposed scheme is based on task priority and non-conventional sliding mode control. Furthermore, the proposal includes two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The applicability and feasibility of the proposed collaborative solution for robotic surface treatment are substantiated by experimental results using a redundant 7R manipulator: the Sawyer collaborative robot.

Loading

Article metrics loading...

/content/journals/10.1075/is.18010.gra
2019-07-15
2025-04-28
Loading full text...

Full text loading...

References

  1. Angel-Fernandez, J. and A. Bonarini
    (2016) Robots showing emotions. Interaction Studies, 17(3):408–437. 10.1075/is.17.3.06ang
    https://doi.org/10.1075/is.17.3.06ang [Google Scholar]
  2. Arnal, L., J. E. Solanes, J. Molina, and J. Tornero
    (2017) Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45:306–321. 10.1016/j.jmsy.2017.07.006
    https://doi.org/10.1016/j.jmsy.2017.07.006 [Google Scholar]
  3. Bassi, E., F. Benzi, L. M. Capisani, D. Cuppone, and A. Ferrara
    (2009) Hybrid position/force sliding mode control of a class of robotic manipulators. InProceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages2966–2971.
    [Google Scholar]
  4. Chiaverini, S., G. Oriolo, and I. Walker
    (2008) Kinematically redundant manipulators. Springer Handbook of Robotics, pages245–268. 10.1007/978‑3‑540‑30301‑5_12
    https://doi.org/10.1007/978-3-540-30301-5_12 [Google Scholar]
  5. Dimeas, F. and N. Aspragathos
    (2016) Online stability in human-robot cooperation with admittance control. IEEE Transactions on Haptics, 9(2):267–278. 10.1109/TOH.2016.2518670
    https://doi.org/10.1109/TOH.2016.2518670 [Google Scholar]
  6. Edwards, C. and S. Spurgeon
    (1998) Sliding Mode Control: Theory and Applications. Taylor & Francis, UK, 1st edition. 10.1201/9781498701822
    https://doi.org/10.1201/9781498701822 [Google Scholar]
  7. Elbehiery, H., A. Hefnawy, and M. Elewa
    (2007) Surface defects detection for ceramic tiles using image processing and morphological techniques. International Journal of Computer and Information Engineering, 1(5):1488–1492.
    [Google Scholar]
  8. Engeberg, E., S. Meek, and M. Minor
    (2008) Hybrid force-velocity sliding mode control of a prosthetic hand. IEEE Transactions on Biomedical Engineering, 55(5):1572–1581. 10.1109/TBME.2007.914672
    https://doi.org/10.1109/TBME.2007.914672 [Google Scholar]
  9. Etzioni, A. and O. Etzioni
    (2017) The ethics of robotic caregivers. Interaction Studies, 18(2):174–190. 10.1075/is.18.2.02etz
    https://doi.org/10.1075/is.18.2.02etz [Google Scholar]
  10. Golub, G. and C. Van Loan
    (1996) Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 3rd edition.
    [Google Scholar]
  11. Graaf, M. de, S. Allouch, and J. van Dijk
    (2016) Long-term evaluation of a social robot in real homes. Interaction Studies, 17(3):461–490. 10.1075/is.17.3.08deg
    https://doi.org/10.1075/is.17.3.08deg [Google Scholar]
  12. Huang, S.-J., Y.-C. Liu, and S.-H. Hsiang
    (2013) Robotic end-effector impedance control without expensive torque/force sensor. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7(7):1446–1453.
    [Google Scholar]
  13. Jlassi, S., S. Tliba, and Y. Chitour
    (2014) An event-controlled online trajectory generator based on the human-robot interaction force processing. Industrial Robot: An International Journal, 41(1):15–25. 10.1108/IR‑01‑2013‑317
    https://doi.org/10.1108/IR-01-2013-317 [Google Scholar]
  14. Kashiri, N., N. G. Tsagarakis, M. Van Damme, B. Vanderborght, and D. G. Caldwell
    (2016) Proxy-Based Sliding Mode Control of Compliant Joint Manipulators, pages241–257. Springer International Publishing, Cham.
    [Google Scholar]
  15. Khan, A. M., D.-W. Yun, K. M. Zuhaib, J. Iqbal, R.-J. Yan, F. Khan, and C. Han
    (2017) Estimation of desired motion intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2):802–814. 10.1007/s12555‑015‑0151‑7
    https://doi.org/10.1007/s12555-015-0151-7 [Google Scholar]
  16. Levant, A.
    (2003) Higher-order sliding modes, differentiation and output-feedback control. Int. Journal of Control, 76(9–10):924–941. 10.1080/0020717031000099029
    https://doi.org/10.1080/0020717031000099029 [Google Scholar]
  17. Levent, A.
    (2005) Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11):1812–1816. 10.1109/TAC.2005.858646
    https://doi.org/10.1109/TAC.2005.858646 [Google Scholar]
  18. Li, Y. and S. S. Ge
    (2016) Force tracking control for motion synchronization in humanrobot collaboration. Robotica, 34(6):1260–1281. 10.1017/S0263574714002240
    https://doi.org/10.1017/S0263574714002240 [Google Scholar]
  19. Martínez, S. S., J. G. Ortega, J. G. García, A. S. García, and E. E. Estévez
    (2013) An industrial vision system for surface quality inspection of transparent parts. The International Journal of Advanced Manufacturing Technology, 68(5):1123–1136. 10.1007/s00170‑013‑4904‑2
    https://doi.org/10.1007/s00170-013-4904-2 [Google Scholar]
  20. Massoud, A. T., H. A. El Maraghy, and T. Lahdhiri
    (1999) On the robust nonlinear motion position and force control of flexible joints robot manipulators. Journal of Intelligent and Robotic Systems, 25(3):227–254. 10.1023/A:1008099522350
    https://doi.org/10.1023/A:1008099522350 [Google Scholar]
  21. Mitra, A. and L. Behera
    (2015) Development of a fuzzy sliding mode controller with adaptive tuning technique for a mri guided robot in the human vasculature. In2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pages370–377. 10.1109/INDIN.2015.7281763
    https://doi.org/10.1109/INDIN.2015.7281763 [Google Scholar]
  22. Molina, J., J. E. Solanes, L. Arnal, and J. Tornero
    (2017) On the detection of defects on specular car body surfaces. Robotics and Computer-Integrated Manufacturing, 48:263–278. 10.1016/j.rcim.2017.04.009
    https://doi.org/10.1016/j.rcim.2017.04.009 [Google Scholar]
  23. Nakamura, Y., H. Hanafusa, and T. Yoshikawa
    (1987) Task-priority based redundancy control of robot manipulators. The Int. Journal of Robotics Research, 6(2):3–15. 10.1177/027836498700600201
    https://doi.org/10.1177/027836498700600201 [Google Scholar]
  24. Orta, G., A. S. Bilgi, K. Tasdemir, and H. Kalkan
    (2016) A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 130:38–47. 10.1016/j.compag.2016.10.001
    https://doi.org/10.1016/j.compag.2016.10.001 [Google Scholar]
  25. Papadopoulos, F., D. Kuster, L. Corrigan, A. Kappas, and G. Castellano
    (2016) Do relative positions and proxemics affect the engagement in a human-robot collaborative scenario?Interaction Studies, 17(3):321–347. 10.1075/is.17.3.01pap
    https://doi.org/10.1075/is.17.3.01pap [Google Scholar]
  26. Rahman, N. and M. C. Lee
    (2013) Reaction force separation method of surgical tool from unknown dynamics and disturbances by fuzzy logic and perturbation observer of smcspo algorithm. InThe SICE Annual Conference 2013, pages2536–2541.
    [Google Scholar]
  27. Roswell, A., F. J. Xi, and G. Liu
    (2006) Modelling and analysis of contact stress for automated polishing. International Journal of Machine Tools and Manufacture, 46(3):424–435. 10.1016/j.ijmachtools.2005.05.006
    https://doi.org/10.1016/j.ijmachtools.2005.05.006 [Google Scholar]
  28. Sakaino, S. and K. Ohnishi
    (2006) Sliding mode control based on position control for contact motion applied to hopping robot. In2006 IEEE International Conference on Industrial Technology, pages170–175. 10.1109/ICIT.2006.372347
    https://doi.org/10.1109/ICIT.2006.372347 [Google Scholar]
  29. Shi, Y., D. Zheng, L. Hu, Y. Wang, and L. Wang
    (2012) Nc polishing of aspheric surfaces under control of constant pressure using a magnetorheological torque servo. The International Journal of Advanced Manufacturing Technology, 58(9):1061–1073. 10.1007/s00170‑011‑3445‑9
    https://doi.org/10.1007/s00170-011-3445-9 [Google Scholar]
  30. Siciliano, B. and J. Slotine
    (1991) A general framework for managing multiple tasks in highly redundant robotic systems. InProceedings of the Fifth Int. Conference on Advanced Robotics (ICAR’91), pages1211–1216, Pisa, Italy.
    [Google Scholar]
  31. Siciliano, B., L. Sciavicco, L. Villani, and G. Oriolo
    (2009) Robotics: Modelling, Planning and Control. Springer-Verlag, London, UK. 10.1007/978‑1‑84628‑642‑1
    https://doi.org/10.1007/978-1-84628-642-1 [Google Scholar]
  32. Tian, F., Z. Li, C. Lv, and G. Liu
    (2016) Polishing pressure investigations of robot automatic polishing on curved surfaces. The International Journal of Advanced Manufacturing Technology, 87(1):639–646. 10.1007/s00170‑016‑8527‑2
    https://doi.org/10.1007/s00170-016-8527-2 [Google Scholar]
  33. Tornero, J., L. Armesto, M. C. Mora, N. Montés, A. Herráez, and J. Asensio
    (2012) Detección de defectos en carrocerías de vehículos basado en visión artificial: Diseño e implantación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(1):93–104. 10.1016/j.riai.2011.11.010
    https://doi.org/10.1016/j.riai.2011.11.010 [Google Scholar]
  34. Utkin, V., J. Guldner, and J. Shi
    (2009) Sliding Mode Control in Electro-Mechanical Systems. Taylor & Francis, London, 2nd edition. 10.1201/9781420065619
    https://doi.org/10.1201/9781420065619 [Google Scholar]
  35. Vlachos, E., E. Jochum, and L.-P. Demers
    (2016) The effects of exposure to different social robots on attitudes toward preferences. Interaction Studies, 17(3):390–404. 10.1075/is.17.3.04vla
    https://doi.org/10.1075/is.17.3.04vla [Google Scholar]
  36. Vogel, J., S. Haddadin, B. Jarosiewicz, J. Simeral, D. Bacher, L. Hochberg, J. Donoghue, and P. van der Smagt
    (2015) An assistive decision-and-control architecture for force-sensitive hand-arm systems driven by human-machine interfaces. The International Journal of Robotics Research, 34(6):763–780. 10.1177/0278364914561535
    https://doi.org/10.1177/0278364914561535 [Google Scholar]
  37. Wu, Q., X. Wang, F. Du, and Q. Zhu
    (2015) Fuzzy sliding mode control of an upper limb exoskeleton for robot-assisted rehabilitation. In2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pages451–456. 10.1109/MeMeA.2015.7145246
    https://doi.org/10.1109/MeMeA.2015.7145246 [Google Scholar]
  38. Yun, D., A. M. Khan, R.-J. Yan, Y. Ji, H. Jang, J. Iqbal, K. M. Zuhaib, J. Y. Ahn, J. Han, and C. Han
    (2016) Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control. International Journal of Precision Engineering and Manufacturing, 17(3):355–362. 10.1007/s12541‑016‑0044‑6
    https://doi.org/10.1007/s12541-016-0044-6 [Google Scholar]
  39. Zhou, J., Z. Zhou, and Q. Ai
    (2016) Impedance control of the rehabilitation robot based on sliding mode control. InX. Li, editor, Mechanical Engineering and Control Systems (MECS2015), pages135–140. 10.1142/9789814740616_0030
    https://doi.org/10.1142/9789814740616_0030 [Google Scholar]
/content/journals/10.1075/is.18010.gra
Loading
/content/journals/10.1075/is.18010.gra
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): cooperative control; robot system; robust control; sliding mode control
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error