Volume 20, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes



Human-robot collaboration, whereby the human and the robot join their forces to achieve a task, opens new application opportunities in manufacturing. Robots can perform precise and repetitive operations while humans can execute tasks that require dexterity and problem-solving abilities. Moreover, collaborative robots can take over heavy-duty tasks. Musculoskeletal disorders (MSDs) are a serious health concern and the primary cause of absenteeism at work. While the role of the human is still essential in flexible production environment, the robot can help decreasing the workload of workers. This paper describes a novel framework for task allocation of human-robot assembly applications based on capabilities and ergonomics considerations. Capable agents are determined on the basis of agent characteristics and task requirements. Ergonomics is integrated by measuring the human body posture and the related workload. The developed framework was validated on a gearbox assembly use case using the collaborative robot Baxter.


Article metrics loading...

Loading full text...

Full text loading...


  1. Babič, J., Mombaur, K., Lefeber, D., van Dieën, J., Graimann, B., Russold, M., … Houdijk, H.
    (2017) Spexor: spinal exoskeletal robot for low back pain prevention and vocational reintegration. InWearable robotics: challenges and trends (pp.311–315). Springer. 10.1007/978‑3‑319‑46532‑6_51
    https://doi.org/10.1007/978-3-319-46532-6_51 [Google Scholar]
  2. Bauer, A., Wollherr, D., & Buss, M.
    (2008) Human-robot collaboration: a survey. International Journal of Humanoid Robotics, 5(01), 47–66. 10.1142/S0219843608001303
    https://doi.org/10.1142/S0219843608001303 [Google Scholar]
  3. Beeson, P., & Ames, B.
    (2015, November). TRAC-IK: An open-source library for improved solving of generic inverse kinematics. InProceedings of the ieee ras humanoids conference. Seoul, Korea. 10.1109/HUMANOIDS.2015.7363472
    https://doi.org/10.1109/HUMANOIDS.2015.7363472 [Google Scholar]
  4. Bevan, S.
    (2015) Economic impact of musculoskeletal disorders (msds) on work in europe. Best Practice & Research Clinical Rheumatology, 29(3), 356–373. 10.1016/j.berh.2015.08.002
    https://doi.org/10.1016/j.berh.2015.08.002 [Google Scholar]
  5. Busch, B., Maeda, G., Mollard, Y., Demangeat, M., & Lopes, M.
    (2017) Postural optimization for an ergonomic human-robot interaction. InInternational conference on intelligent robots and systems (iros), 2017 ieee/rsj international conference on (pp.1–8).
    [Google Scholar]
  6. Calinon, S., Sardellitti, I., & Caldwell, D. G.
    (2010) Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. InIntelligent robots and systems (iros), 2010 ieee/rsj international conference on (pp.249–254). 10.1109/IROS.2010.5648931
    https://doi.org/10.1109/IROS.2010.5648931 [Google Scholar]
  7. Chen, F., Sekiyama, K., Cannella, F., & Fukuda, T.
    (2014) Optimal subtask allocation for human and robot collaboration within hybrid assembly system. IEEE Transactions on Automation Science and Engineering, 11(4), 1065–1075. 10.1109/TASE.2013.2274099
    https://doi.org/10.1109/TASE.2013.2274099 [Google Scholar]
  8. Diego-Mas, J. A., & Alcaide-Marzal, J.
    (2014) Using kinect™ sensor in observational methods for assessing postures at work. Applied ergonomics, 45(4), 976–985. 10.1016/j.apergo.2013.12.001
    https://doi.org/10.1016/j.apergo.2013.12.001 [Google Scholar]
  9. El Makrini, I., Merckaert, K., Lefeber, D., & Vanderborght, B.
    (2017) Design of a collaborative architecture for human-robot assembly tasks. InIntelligent robots and systems (iros), 2017 ieee/rsj international conference on (pp.1624–1629). 10.1109/IROS.2017.8205971
    https://doi.org/10.1109/IROS.2017.8205971 [Google Scholar]
  10. El Makrini, I., Rodriguez-Guerrero, C., Lefeber, D., & Vanderborght, B.
    (2017) The variable boundary layer sliding mode control: A safe and performant control for compliant joint manipulators. IEEE Robotics and Automation Letters, 2(1), 187–192.
    [Google Scholar]
  11. Elprama, S. A., Jewell, C. I., Jacobs, A., El Makrini, I., & Vanderborght, B.
    (2017) Attitudes of factory workers towards industrial and collaborative robots. InProceedings of the companion ofthe 2017 acm/ieee international conference on human-robot interaction (pp.113–114). 10.1145/3029798.3038309
    https://doi.org/10.1145/3029798.3038309 [Google Scholar]
  12. Ferguson, D.
    (2000) Therbligs: The keys to simplifying work. The Gilbreth.
    [Google Scholar]
  13. Hignett, S., & McAtamney, L.
    (2000) Rapid entire body assessment (reba). Applied ergonomics, 31(2), 201–205. 10.1016/S0003‑6870(99)00039‑3
    https://doi.org/10.1016/S0003-6870(99)00039-3 [Google Scholar]
  14. Johannsmeier, L., & Haddadin, S.
    (2017) A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters, 2(1), 41–48. 10.1109/LRA.2016.2535907
    https://doi.org/10.1109/LRA.2016.2535907 [Google Scholar]
  15. Koppula, H. S., Jain, A., & Saxena, A.
    (2016) Anticipatory planning for human-robot teams. InExperimental robotics (pp.453–470). 10.1007/978‑3‑319‑23778‑7_30
    https://doi.org/10.1007/978-3-319-23778-7_30 [Google Scholar]
  16. Lemaignan, S., Garcia, F., Jacq, A., & Dillenbourg, P.
    (2016) From real-time attention assessment to “with-me-ness” in human-robot interaction. InProceedings of the 2016 acm/ieee human-robot interaction conference. Retrieved fromgithub.com/severin-lemaignan/gazr. 10.1109/HRI.2016.7451747
    https://doi.org/10.1109/HRI.2016.7451747 [Google Scholar]
  17. Liu, C., Hamrick, J. B., Fisac, J. F., Dragan, A. D., Hedrick, J. K., Sastry, S. S., & Griffiths, T. L.
    (2016) Goal inference improves objective and perceived performance in human-robot collaboration. InProceedings of the 2016 international conference on autonomous agents & multiagent systems (pp.940–948).
    [Google Scholar]
  18. Malvankar-Mehta, M. S., & Mehta, S. S.
    (2015) Optimal task allocation in multi-human multi-robot interaction. Optimization Letters, 9(8), 1787–1803. 10.1007/s11590‑015‑0890‑7
    https://doi.org/10.1007/s11590-015-0890-7 [Google Scholar]
  19. Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., & Hagita, N.
    (2008) Adapting robot behavior for human-robot interaction. IEEE Transactions on Robotics, 24(4), 911–916. 10.1109/TRO.2008.926867
    https://doi.org/10.1109/TRO.2008.926867 [Google Scholar]
  20. Näf, M. B., De Rijcke, L., Guerrero, C. R., Millard, M., Vanderborght, B., & Lefeber, D.
    (2017) Towards low back support with a passive biomimetic exo-spine. InRehabilitation robotics (icorr), 2017 international conference on (pp.1165–1170). 10.1109/ICORR.2017.8009407
    https://doi.org/10.1109/ICORR.2017.8009407 [Google Scholar]
  21. Otani, K., Bouyarmane, K., & Ivaldi, S.
    (2017) Generating assistive humanoid motions for co-manipulation tasks with a multi-robot quadratic program controller. 10.1109/ICRA.2018.8463167
    https://doi.org/10.1109/ICRA.2018.8463167 [Google Scholar]
  22. Owen-Hill, A. [Google Scholar]
  23. Peternel, L., Tsagarakis, N., & Ajoudani, A.
    (2017) A human-robot co-manipulation approach based on human sensorimotor information. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 811–822. 10.1109/TNSRE.2017.2694553
    https://doi.org/10.1109/TNSRE.2017.2694553 [Google Scholar]
  24. Plantard, P., Shum, H. P., Le Pierres, A.-S., & Multon, F.
    (2017) Validation of an ergonomic assessment method using kinect data in real workplace conditions. Applied ergonomics, 65, 562–569. 10.1016/j.apergo.2016.10.015
    https://doi.org/10.1016/j.apergo.2016.10.015 [Google Scholar]
  25. PrimeSense
    PrimeSense (2013) Nite openni.ru/files/nite/
    [Google Scholar]
  26. Robotic Industries Association
    Robotic Industries Association (2013) The end of separation: Man and robot as collaborative coworkers on the factory floor. www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/The-End-of-Separation-Man-and-Robot-as-Collaborative-Coworkers-on-the-Factory-Floor/content_id/414®
    [Google Scholar]
  27. Roncone, A., Mangin, O., & Scassellati, B.
    (2017) Transparent role assignment and task allocation in human robot collaboration. InRobotics and automation (icra), 2017 ieee international conference on (pp.1014–1021). 10.1109/ICRA.2017.7989122
    https://doi.org/10.1109/ICRA.2017.7989122 [Google Scholar]
  28. Takala, E.-P., Pehkonen, I., Forsman, M., Hansson, G.-Å., Mathiassen, S. E., Neumann, W. P.,… Winkel, J.
    (2010) Systematic evaluation of observational methods assessing biomechanical exposures at work. Scandinavian journal of work, environment & health, 3–24. 10.5271/sjweh.2876
    https://doi.org/10.5271/sjweh.2876 [Google Scholar]
  29. Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T., Dimoulas, K., & Chryssolouris, G.
    (2017) On a human-robot workplace design and task allocation system. International Journal of Computer Integrated Manufacturing, 30(12), 1272–1279. 10.1080/0951192X.2017.1307524
    https://doi.org/10.1080/0951192X.2017.1307524 [Google Scholar]
  30. Van der Beek, A. J., & Frings-Dresen, M.
    (1998) Assessment of mechanical exposure in ergonomic epidemiology. Occupational and environmental medicine, 55(5), 291–299. 10.1136/oem.55.5.291
    https://doi.org/10.1136/oem.55.5.291 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): assembly; collaborative robot; ergonomics; human body posture; task allocation

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error