1887
Volume 22, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Enhancing synchronization among people when synchronization is lacking is believed to improve their social skills, learning processes, and proficiency in musical rhythmic development. Greater synchronization among people can be induced to improve the rhythmic interaction of a system with multiple dancing robots that dance to a drum beat. A series of experiments were conducted to examine the human–human synchrony between persons that participated in musical sessions with robots. In this study, we evaluated: (a) the effect of the number of robots on a subject’s ability to synchronize with an experimenter; (b) the effect of the type of robot synchrony, namely, whether the robots did or did not represent the subject’s rhythm; (c) the effect of an in-sync and out-of-sync robot on a subject’s behavior. We found that: (a) three robots increased the level of synchronization between the subject and experimenter and their enjoyment level; (b) robots may induce greater synchronization between the subject and experimenter by reproducing the rhythms of not only the experimenter but also of the subject compared to when only the experimenter’s rhythms had been reproduced; (c) the robots in-sync had greater influence on the natural rhythm of the subject.

Loading

Article metrics loading...

/content/journals/10.1075/is.18027.men
2021-09-17
2025-02-18
Loading full text...

Full text loading...

References

  1. Alimardani, M., Nishio, S., & Ishiguro, H.
    (2013) Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators. Scientific reports, 3, 2396. 10.1038/srep02396
    https://doi.org/10.1038/srep02396 [Google Scholar]
  2. (2014) Effect of biased feedback on motor imagery learning in BCI-teleoperation system. Frontiers in systems neuroscience, 8, 52. 10.3389/fnsys.2014.00052
    https://doi.org/10.3389/fnsys.2014.00052 [Google Scholar]
  3. Arimoto, T., Yoshikawa, Y., & Ishiguro, H.
    (2018) Multiple-Robot Conversational Patterns for Concealing Incoherent Responses. International Journal of Social Robotics, 1–11. 10.1007/s12369‑018‑0468‑5
    https://doi.org/10.1007/s12369-018-0468-5 [Google Scholar]
  4. Avrunin, E., Hart, J., Douglas, A., & Scassellati, B.
    (2011, March). Effects related to synchrony and repertoire in perceptions of robot dance. InProceedings of the 6th international conference on Human-robot interaction (pp.93–100). ACM. 10.1145/1957656.1957678
    https://doi.org/10.1145/1957656.1957678 [Google Scholar]
  5. Barsade, S. G.
    (2002) The ripple effect: Emotional contagion and its influence on group behavior. Administrative Science Quarterly, 47(4), 644–675. 10.2307/3094912
    https://doi.org/10.2307/3094912 [Google Scholar]
  6. Bhide, A., Power, A., & Goswami, U.
    (2013) A rhythmic musical intervention for poor readers: A comparison of efficacy with a letter-based intervention. Mind, Brain, and Education, 7(2), 113–123. 10.1111/mbe.12016
    https://doi.org/10.1111/mbe.12016 [Google Scholar]
  7. Blakemore
    (1999) Spatio-Temporal Prediction Modulates the Perception of Self-Produced Stimuli, Journal of Cognitive Neuroscience, 11:5, pp.551–559. 10.1162/089892999563607
    https://doi.org/10.1162/089892999563607 [Google Scholar]
  8. Botvinick, M., & Cohen, J.
    (1998) Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756. 10.1038/35784
    https://doi.org/10.1038/35784 [Google Scholar]
  9. Briggs, G., & Scheutz, M.
    (2014) How robots can affect human behavior: Investigating the effects of robotic displays of protest and distress. International Journal of Social Robotics, 6(3), 343–355. 10.1007/s12369‑014‑0235‑1
    https://doi.org/10.1007/s12369-014-0235-1 [Google Scholar]
  10. Brown, S.
    (2000) Evolutionary models of music: From sexual selection to group selection. InPerspectives in ethology (pp.231–281). Springer, Boston, MA. 10.1007/978‑1‑4615‑1221‑9_9
    https://doi.org/10.1007/978-1-4615-1221-9_9 [Google Scholar]
  11. Cohen, G. L.
    (2003) Party over policy: The dominating impact of group influence on political beliefs. Journal of personality and social psychology, 85(5), 808. 10.1037/0022‑3514.85.5.808
    https://doi.org/10.1037/0022-3514.85.5.808 [Google Scholar]
  12. Crick, C., Munz, M., & Scassellati, B.
    (2006, September). Synchronization in social tasks: Robotic drumming. InRobot and Human Interactive Communication, 2006. ROMAN 2006. (pp.97–102). The 15th IEEE International Symposium. 10.1109/ROMAN.2006.314401
    https://doi.org/10.1109/ROMAN.2006.314401 [Google Scholar]
  13. David, D., Wade-Woolley, L., Kirby, J., Smithrim, K.
    (2007) Rhythm and reading development in school-age children: A longitudinal study. Journal of Research in Reading. Volume30, Issue2, 169–183. 10.1111/j.1467‑9817.2006.00323.x
    https://doi.org/10.1111/j.1467-9817.2006.00323.x [Google Scholar]
  14. Eerola, T., Luck, G., & Toiviainen, P.
    (2006, August). An investigation of pre-schoolers’ corporeal synchronization with music. InProceedings of the 9th international conference on music perception and cognition (pp.472–476). The Society for Music Perception and Cognition and European Society for the Cognitive Sciences of Music Bologna.
    [Google Scholar]
  15. Gan, L., Huang, Y., Zhou, L., Qian, C., & Wu, X.
    (2015) Synchronization to a bouncing ball with a realistic motion trajectory. Scientific reports, 5, 11974. 10.1038/srep11974
    https://doi.org/10.1038/srep11974 [Google Scholar]
  16. Hoffman, G., & Vanunu, K.
    (2013) Effects of Robotic Companionship on Music Enjoyment and Agent Perception. InProceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction (pp.317–324). IEEE/RSJ International Conference on Intelligent Robots and Systems Int’l Workshop on Human-Agent Interaction. 10.1109/HRI.2013.6483605
    https://doi.org/10.1109/HRI.2013.6483605 [Google Scholar]
  17. Hove, M. J., Iversen, J. R., Zhang, A., & Repp, B. H.
    (2013) Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome. Psychological Research, 77(4), 388–398. 10.1007/s00426‑012‑0441‑0
    https://doi.org/10.1007/s00426-012-0441-0 [Google Scholar]
  18. Iio, T., Yoshikawa, Y., & Ishiguro, H.
    (2016, October). Pre-scheduled turn-taking between robots to make conversation coherent. InProceedings of the Fourth International Conference on Human Agent Interaction (pp.19–25). ACM. 10.1145/2974804.2974819
    https://doi.org/10.1145/2974804.2974819 [Google Scholar]
  19. Iqbal, T., Moosaei, M., & Riek, L. D.
    (2016) Tempo adaptation and anticipation methods for human-robot teams. RSS, Planning for HRI: Shared Autonomy and Collab. Robotics Work.
    [Google Scholar]
  20. Jaffe, J., Beebe, B., Feldstein, S., Crown, C. L., Jasnow, M. D., Rochat, P., & Stern, D. N.
    (2001) Rhythms of dialogue in infancy: Coordinated timing in development. Monographs of the society for research in child development, i–149.
    [Google Scholar]
  21. Kawasaki, M., Yamada, Y., Ushiku, Y., Miyauchi, E., & Yamaguchi, Y.
    (2013) Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction. Scientific reports, 3, 1692. 10.1038/srep01692
    https://doi.org/10.1038/srep01692 [Google Scholar]
  22. Kelso, J. S.
    (1997) Dynamic patterns: The self-organization of brain and behavior. MIT press.
    [Google Scholar]
  23. Kose-Bagci, H., Dautenhahn, K., & Nehaniv, C. L.
    (2008, August). Emergent dynamics of turn-taking interaction in drumming games with a humanoid robot. InRO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication (pp.346–353). IEEE. 10.1109/ROMAN.2008.4600690
    https://doi.org/10.1109/ROMAN.2008.4600690 [Google Scholar]
  24. LaGasse, A. B., & Hardy, M. W.
    (2013) Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Frontiers in integrative neuroscience, 7, 19.
    [Google Scholar]
  25. Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O.
    (2007) Video ergo sum: manipulating bodily self-consciousness. Science, 317(5841), 1096–1099. 10.1126/science.1143439
    https://doi.org/10.1126/science.1143439 [Google Scholar]
  26. Ma, K., & Hommel, B.
    (2015) The role of agency for perceived ownership in the virtual hand illusion. Consciousness and cognition, 36, 277–288. 10.1016/j.concog.2015.07.008
    https://doi.org/10.1016/j.concog.2015.07.008 [Google Scholar]
  27. Mates, J.
    (1994) A model of synchronization of motor acts to a stimulus sequence. Biological cybernetics, 70(5), 463–473. 10.1007/BF00203239
    https://doi.org/10.1007/BF00203239 [Google Scholar]
  28. McNeill, W. H.
    (2009) Keeping Together in Time: Dance and Drill in Human History. Harvard Univ. Press. 10.2307/j.ctvjf9wq6
    https://doi.org/10.2307/j.ctvjf9wq6 [Google Scholar]
  29. Merker, B.
    (1999) Synchronous chorusing and the origins of music. Musicae Scientiae, 3(1_suppl), 59–73. 10.1177/10298649000030S105
    https://doi.org/10.1177/10298649000030S105 [Google Scholar]
  30. Michalowski, M. P., Sabanovic, S., & Kozima, H.
    (2007, March). A dancing robot for rhythmic social interaction. In2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2007 (pp.89–96). IEEE. 10.1145/1228716.1228729
    https://doi.org/10.1145/1228716.1228729 [Google Scholar]
  31. Michalowski, M. P., Simmons, R., & Kozima, H.
    (2009, September). Rhythmic attention in child-robot dance play. InRobot and Human Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium on (pp.816–821). IEEE. 10.1109/ROMAN.2009.5326143
    https://doi.org/10.1109/ROMAN.2009.5326143 [Google Scholar]
  32. Miles, L. K., Nind, L. K., & Macrae, C. N.
    (2009) The rhythm of rapport: Interpersonal synchrony and social perception. Journal of experimental social psychology, 45(3), 585–589. 10.1016/j.jesp.2009.02.002
    https://doi.org/10.1016/j.jesp.2009.02.002 [Google Scholar]
  33. Milgram, S., Bickman, L., & Berkowitz, L.
    (1969) Note on the drawing power of crowds of different size. Journal of personality and social psychology, 13(2), 79. 10.1037/h0028070
    https://doi.org/10.1037/h0028070 [Google Scholar]
  34. Milgram, S. & Gudehus, C.
    (1978) Obedience to authority.
    [Google Scholar]
  35. Mörtl, A., Lorenz, T., & Hirche, S.
    (2014) Rhythm patterns interaction-synchronization behavior for human-robot joint action. PloS one, 9(4), e95195. 10.1371/journal.pone.0095195
    https://doi.org/10.1371/journal.pone.0095195 [Google Scholar]
  36. Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L.
    (2000) Tumultuous applause can transform itself into waves of synchronized clapping. Nature, 403(6772), 849–850. 10.1038/35002660
    https://doi.org/10.1038/35002660 [Google Scholar]
  37. Nishio, S., Watanabe, T., Ogawa, K., & Ishiguro, H.
    (2012, October). Body ownership transfer to teleoperated android robot. InInternational Conference on Social Robotics (pp.398–407). Springer, Berlin, Heidelberg. 10.1007/978‑3‑642‑34103‑8_40
    https://doi.org/10.1007/978-3-642-34103-8_40 [Google Scholar]
  38. Overy, K.
    (2012) Making music in a group: synchronization and shared experience. Annals of the New York Academy of Sciences, 1252(1), 65–68. 10.1111/j.1749‑6632.2012.06530.x
    https://doi.org/10.1111/j.1749-6632.2012.06530.x [Google Scholar]
  39. Pikovsky, A., Rosenblum, M., & Kurths, J.
    (2003) Synchronization: a universal concept in nonlinear sciences (Vol.12). Cambridge university press. 10.1007/978‑94‑010‑0217‑2
    https://doi.org/10.1007/978-94-010-0217-2 [Google Scholar]
  40. Rau, P. L. P., Li, Y., & Liu, J.
    (2013) Effects of a social robot’s autonomy and group orientation on human decision-making. Advances in Human-Computer Interaction 2013, 11. 10.1155/2013/263721
    https://doi.org/10.1155/2013/263721 [Google Scholar]
  41. Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C.
    (2007) Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human movement science, 26(6), 867–891. 10.1016/j.humov.2007.07.002
    https://doi.org/10.1016/j.humov.2007.07.002 [Google Scholar]
  42. Richardson, M. J., Marsh, K. L., & Schmidt, R. C.
    (2005) Effects of visual and verbal interaction on unintentional interpersonal coordination. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 62. 10.1037/h0049034
    https://doi.org/10.1037/h0049034 [Google Scholar]
  43. Roederer, J. G.
    (1984) The search for a survival value of music. Music Perception: An Interdisciplinary Journal, 1(3), 350–356. 10.2307/40285265
    https://doi.org/10.2307/40285265 [Google Scholar]
  44. Schloss, W. A.
    (1985) On the automatic transcription of percussive music – From acoustic signals to high-level analysis (Doctoral dissertation, Stanford University).
  45. Schmidt, R. C., Carello, C., & Turvey, M. T.
    (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of experimental psychology: human perception and performance, 16(2), 227.
    [Google Scholar]
  46. Scothern, P. M. T.
    (1992) The music-archaeology of the Palaeolithic within its cultural setting (Doctoral dissertation, University of Cambridge).
  47. Shimada
    (2009) Rubber Hand Illusion under Delayed Visual Feedback, PLoS ONE, 4(7): e6185. 10.1371/journal.pone.0006185
    https://doi.org/10.1371/journal.pone.0006185 [Google Scholar]
  48. Slater, M., Pérez–Marcos, D., Ehrsson, H., & Sanchez–Vives, M. V.
    (2008) Towards a digital body: the virtual arm illusion. Frontiers in human neuroscience, 2, 6. 10.3389/neuro.09.006.2008
    https://doi.org/10.3389/neuro.09.006.2008 [Google Scholar]
  49. Tsakiris, M., & Haggard, P.
    (2005) The rubber hand illusion revisited: visuotactile integration and self-attribution. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 80.
    [Google Scholar]
  50. Valdesolo, P., Ouyang, J., & DeSteno, D.
    (2010) The rhythm of joint action: Synchrony promotes cooperative ability. Journal of Experimental Social Psychology, 46(4), 693–695. 10.1016/j.jesp.2010.03.004
    https://doi.org/10.1016/j.jesp.2010.03.004 [Google Scholar]
  51. van Ulzen, N. R., Lamoth, C. J., Daffertshofer, A., Semin, G. R., & Beek, P. J.
    (2008) Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neuroscience letters, 432(2), 88–93. 10.1016/j.neulet.2007.11.070
    https://doi.org/10.1016/j.neulet.2007.11.070 [Google Scholar]
  52. Van Vugt, F. T., Ritter, J., Rollnik, J. D., & Altenmüller, E.
    (2014) Music-supported motor training after stroke reveals no superiority of synchronization in group therapy. Frontiers in human neuroscience, 8, 315. 10.3389/fnhum.2014.00315
    https://doi.org/10.3389/fnhum.2014.00315 [Google Scholar]
  53. Wallach, M. A., Kogan, N., & Bem, D. J.
    (1962) Group influence on individual risk taking. ETS Research Report Series 1962(1).
    [Google Scholar]
  54. Wilder, D. A.
    (1977) Perception of groups, size of opposition, and social influence. Journal of Experimental Social Psychology, 13(3), 253–268. 10.1016/0022‑1031(77)90047‑6
    https://doi.org/10.1016/0022-1031(77)90047-6 [Google Scholar]
/content/journals/10.1075/is.18027.men
Loading
/content/journals/10.1075/is.18027.men
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inter-persons synchronization; multiple robots; rhythm synchronization
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error