1887
Volume 21, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The surge in the development of social robots gives rise to an increased need for systematic methods of assessing attitudes towards robots.

This study presents the development of a questionnaire for assessing attitudinal stance towards social robots: the ASOR.

The 37-item ASOR questionnaire was developed by a task-force with members from different disciplines. It was founded on theoretical considerations of how social robots could influence five different aspects of relatedness.

Three hundred thirty-nine people responded to the survey. Factor analysis of the ASOR yielded a three-factor solution consisting of a total of 25 items: “ascription of mental capacities”, “ascription of socio-practical capacities”, and “ascription of socio-moral status”. This data was further triangulated with data from interviews ( = 10).

the ASOR allows for assessment of three distinct facets of ascription of capacities to social robots and offers a new type of assessment of attitudes towards social robots. It appeared that ASOR not only assesses ascription of capacities to social robots but it also gauged overall positive attitudes towards social robots.

Loading

Article metrics loading...

/content/journals/10.1075/is.18055.fle
2020-01-24
2020-09-28
Loading full text...

Full text loading...

References

  1. Arras, K. O., & Cerqui, D.
    (2005) Do we want to share our lives and bodies with robots? A 2000 people survey. Retrieved fromhttps://infoscience.epfl.ch/record/97585
    [Google Scholar]
  2. Atkinson, P.
    (1992) Understanding ethnographic texts (Vol.25). Sage Publications, Inc.. 10.4135/9781412986403
    https://doi.org/10.4135/9781412986403 [Google Scholar]
  3. Bainbridge, W. A., Hart, J. W., Kim, E. S., & Scassellati, B.
    (2011) The Benefits of Interactions with Physically Present Robots over Video-Displayed Agents. International Journal of Social Robotics, 3(1), 41–52. doi:  10.1007/s12369‑010‑0082‑7
    https://doi.org/10.1007/s12369-010-0082-7 [Google Scholar]
  4. Barbour, R.
    (2008) Doing focus groups. Sage.
    [Google Scholar]
  5. Baron, N. S.
    (2004) See you online: Gender issues in college student use of instant messaging. Journal of Language and Social Psychology, 23(4), 397–423. doi:  10.1177/0261927X04269585
    https://doi.org/10.1177/0261927X04269585 [Google Scholar]
  6. Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S.
    (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71–81. 10.1007/s12369‑008‑0001‑3
    https://doi.org/10.1007/s12369-008-0001-3 [Google Scholar]
  7. Briggs, S. R., & Cheek, J. M.
    (1986) The role of factor analysis in the development and evaluation of personality scales. Journal of Personality, 54(1), 106–148. doi:  10.1111/j.1467‑6494.1986.tb00391.x
    https://doi.org/10.1111/j.1467-6494.1986.tb00391.x [Google Scholar]
  8. Brinkmann, S., & Kvale, S.
    (2015) Interviews learning the craft of qualitative research interviews 3rd Edition. Sage. Brandon, J. and Davies, M. (1979). The Limits of Competence in Social Work: The Assessment of Marginal Students in Social Work Education. British Journal of Social Work, 9(3), 295–347.
    [Google Scholar]
  9. Brinkmann, Svend, & Tanggaard, L.
    (2010) Kvalitative metoder: en grundbog. Hans Reitzels Forlag.
    [Google Scholar]
  10. Broadbent, E., Orejana, J. R., Ahn, H. S., Xie, J., Rouse, P., & MacDonald, B. A.
    (2015) The cost-effectiveness of a robot measuring vital signs in a rural medical practice. 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 577–581. IEEE. 10.1109/ROMAN.2015.7333668
    https://doi.org/10.1109/ROMAN.2015.7333668 [Google Scholar]
  11. Broadbent, E., Tamagawa, R., Patience, A., Knock, B., Kerse, N., Day, K., & MacDonald, B. A.
    (2012) Attitudes towards health-care robots in a retirement village. Australasian Journal on Ageing, 31(2), 115–120. doi:  10.1111/j.1741‑6612.2011.00551.x
    https://doi.org/10.1111/j.1741-6612.2011.00551.x [Google Scholar]
  12. Carnap, R.
    (1988) Meaning and necessity: a study in semantics and modal logic. University of Chicago Press.
    [Google Scholar]
  13. Cattell, R. B.
    (1966) The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. 10.1207/s15327906mbr0102_10
    https://doi.org/10.1207/s15327906mbr0102_10 [Google Scholar]
  14. Daly, C.
    (2010) An introduction to philosophical methods. Broadview Press.
    [Google Scholar]
  15. Damholdt, Vestergaard C., & Seibt, J.
    (2019) Testing for ‘Anthropomorphisation’ – A Case for Mixed Methods in HRI. Springer Publishing Co, New York, NY.
    [Google Scholar]
  16. Damholdt, Yamazaki R., Hakli, R., Hansen, C. V., Vestergaard, C., & Seibt, J.
    (2015) Attitudinal Change in Elderly Citizens Toward Social Robots: The Role of Personality Traits and Beliefs About Robot Functionality. Human-Media Interaction, 1701. doi:  10.3389/fpsyg.2015.01701
    https://doi.org/10.3389/fpsyg.2015.01701 [Google Scholar]
  17. Dautenhahn, K., Walters, M., Woods, S., Koay, K. L., Nehaniv, C. L., Sisbot, A., … Siméon, T.
    (2006) How may I serve you?: a robot companion approaching a seated person in a helping context. Proceeding of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction – HRI ’06, 172. doi:  10.1145/1121241.1121272
    https://doi.org/10.1145/1121241.1121272 [Google Scholar]
  18. Dautenhahn, K., Woods, S., Kaouri, C., Walters, M. L., Koay, K. L., & Werry, I.
    (2005) What is a robot companion – friend, assistant or butler?2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1192–1197. doi:  10.1109/IROS.2005.1545189
    https://doi.org/10.1109/IROS.2005.1545189 [Google Scholar]
  19. Derrick, B., & White, P.
    (2016) Why Welch’s test is Type I error robust. The Quantitative Methods for Psychology, 12(1), 30–38. doi:  10.20982/tqmp.12.1.p030
    https://doi.org/10.20982/tqmp.12.1.p030 [Google Scholar]
  20. Dillman, D. A., Smyth, J. D., & Christian, L. M.
    (2014) Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method, 4th Edition. John Wiley & Sons, Inc.
    [Google Scholar]
  21. Duffy, B. R.
    (2003) Anthropomorphism and the social robot. Robotics and Autonomous Systems, 42(3), 177–190. 10.1016/S0921‑8890(02)00374‑3
    https://doi.org/10.1016/S0921-8890(02)00374-3 [Google Scholar]
  22. Ezer, N., Fisk, A. D., & Rogers, W. A.
    (2009) Attitudinal and intentional acceptance of domestic robots by younger and older adults. InUniversal Access in Human-Computer Interaction. Intelligent and Ubiquitous Interaction Environments (pp.39–48). Retrieved fromlink.springer.com/chapter/10.1007/978-3-642-02710-9_5. 10.1007/978‑3‑642‑02710‑9_5
    https://doi.org/10.1007/978-3-642-02710-9_5 [Google Scholar]
  23. Fink, J.
    (2012) Anthropomorphism and human likeness in the design of robots and human-robot interaction. International Conference on Social Robotics, 199–208. Retrieved fromlink.springer.com/chapter/10.1007/978-3-642-34103-8_20. 10.1007/978‑3‑642‑34103‑8_20
    https://doi.org/10.1007/978-3-642-34103-8_20 [Google Scholar]
  24. Garland, R.
    (1991) The mid-point on a rating scale: Is it desirable. Marketing Bulletin, 66–70.
    [Google Scholar]
  25. Gray, K., & Wegner, D. M.
    (2009) Moral typecasting: divergent perceptions of moral agents and moral patients. Journal of Personality and Social Psychology, 96(3), 505. 10.1037/a0013748
    https://doi.org/10.1037/a0013748 [Google Scholar]
  26. (2011) Morality takes two: Dyadic morality and mind perception. The Social Psychology of Morality: Exploring the Causes of Good and Evil 2011, 109–27.
    [Google Scholar]
  27. Hammersley, M., & Atkinson, P.
    (2007) Ethnography: Principles in practice. Routledge. 10.4324/9780203944769
    https://doi.org/10.4324/9780203944769 [Google Scholar]
  28. Hardin, R. [Google Scholar]
  29. Himma, K. E.
    (2009) Artificial agency, consciousness, and the criteria for moral agency: What properties must an artificial agent have to be a moral agent?Ethics and Information Technology, 11(1), 19–29. 10.1007/s10676‑008‑9167‑5
    https://doi.org/10.1007/s10676-008-9167-5 [Google Scholar]
  30. Horn, J. L.
    (1965) A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. doi:  10.1007/BF02289447
    https://doi.org/10.1007/BF02289447 [Google Scholar]
  31. Johnson, J. A.
    (2014) Measuring thirty facets of the Five Factor Model with a 120-item public domain inventory: Development of the IPIP-NEO-120. Journal of Research in Personality, 51, 78–89. 10.1016/j.jrp.2014.05.003
    https://doi.org/10.1016/j.jrp.2014.05.003 [Google Scholar]
  32. Kahn, P. H., Reichert, A. L., Gary, H. E., Kanda, T., Ishiguro, H., Shen, S., … Gill, B.
    (2011) The new ontological category hypothesis in human-robot interaction. Proceedings of the 6th International Conference on Human-Robot Interaction – HRI ’11, 159. doi:  10.1145/1957656.1957710
    https://doi.org/10.1145/1957656.1957710 [Google Scholar]
  33. Kamide, H., Takubo, T., Ohara, K., Mae, Y., & Arai, T.
    (2014) Impressions of humanoids: the development of a measure for evaluating a humanoid. International Journal of Social Robotics, 6(1), 33–44. 10.1007/s12369‑013‑0187‑x
    https://doi.org/10.1007/s12369-013-0187-x [Google Scholar]
  34. Khan, Z.
    (1998) Attitudes towards intelligent service robots. NADA KTH, Stockholm, 17. Retrieved fromwproj.nada.kth.se/midhistoric/ftp.nada.kth.se/IPLab/TechReports/IPLab-154.pdf
    [Google Scholar]
  35. Kim, J., Lee, H. Y., Candace Christensen, M., & Merighi, J. R.
    (2017) Technology access and use, and their associations with social engagement among older adults: Do women and men differ?Journals of Gerontology – Series B Psychological Sciences and Social Sciences, 72(5), 836–845. doi:  10.1093/geronb/gbw123
    https://doi.org/10.1093/geronb/gbw123 [Google Scholar]
  36. Korsgaard, C.
    (2004) Fellow creatures: Kantian ethics and our duties to animals.
    [Google Scholar]
  37. Krátký, J., McGraw, J. J., Xygalatas, D., Mitkidis, P., & Reddish, P.
    (2016) It Depends Who Is Watching You: 3-D Agent Cues Increase Fairness. PLOS ONE, 11(2), e0148845. doi:  10.1371/journal.pone.0148845
    https://doi.org/10.1371/journal.pone.0148845 [Google Scholar]
  38. Krosnick, J. A., Narayan, S., & Smith, W. R.
    (1996) Satisficing in surveys: Initial evidence. New Directions for Evaluation 1996(70), 29–44. doi:  10.1002/ev.1033
    https://doi.org/10.1002/ev.1033 [Google Scholar]
  39. Kuo, I. H., Rabindran, J. M., Broadbent, E., Lee, Y. I., Kerse, N., Stafford, R. M. Q., & MacDonald, B. A.
    (2009) Age and gender factors in user acceptance of healthcare robots. Robot and Human Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium On, 214–219. Retrieved fromieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5326292. 10.1109/ROMAN.2009.5326292
    https://doi.org/10.1109/ROMAN.2009.5326292 [Google Scholar]
  40. Ledesma, R. D., & Valero-Mora, P.
    (2007) Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. Practical Assessment, Research & Evaluation, 12(2), 1–11.
    [Google Scholar]
  41. Lee, K. M., Jung, Y., Kim, J., & Kim, S. R.
    (2006) Are physically embodied social agents better than disembodied social agents?: The effects of physical embodiment, tactile interaction, and people’s loneliness in human–robot interaction. International Journal of Human-Computer Studies, 64(10), 962–973. doi:  10.1016/j.ijhcs.2006.05.002
    https://doi.org/10.1016/j.ijhcs.2006.05.002 [Google Scholar]
  42. Leung, S.-O.
    (2011) A Comparison of Psychometric Properties and Normality in 4-, 5-, 6-, and 11-Point Likert Scales. Journal of Social Service Research, 37(4), 412–421. doi:  10.1080/01488376.2011.580697
    https://doi.org/10.1080/01488376.2011.580697 [Google Scholar]
  43. Louie, W.-Y. G., McColl, D., & Nejat, G.
    (2014) Acceptance and attitudes toward a human-like socially assistive robot by older adults. Assistive Technology, 26(3), 140–150. 10.1080/10400435.2013.869703
    https://doi.org/10.1080/10400435.2013.869703 [Google Scholar]
  44. Melson, G. F., Kahn Jr., P. H., Beck, A., Friedman, B., Roberts, T., Garrett, E., & Gill, B. T.
    (2009) Children’s behavior toward and understanding of robotic and living dogs. Journal of Applied Developmental Psychology, 30(2), 92–102. doi:  10.1016/j.appdev.2008.10.011
    https://doi.org/10.1016/j.appdev.2008.10.011 [Google Scholar]
  45. Moser, S. Claus, & Kalton, G.
    (1972) Survey methods in social investigation (2nd American ed). Retrieved fromhttps://trove.nla.gov.au/version/25530346
    [Google Scholar]
  46. Mutlu, B., Osman, S., Forlizzi, J., Hodgins, J., & Kiesler, S.
    (2006) Task Structure and User Attributes as Elements of Human-Robot Interaction Design. ROMAN 2006 – The 15th IEEE International Symposium on Robot and Human Interactive Communication, 74–79. doi:  10.1109/ROMAN.2006.314397
    https://doi.org/10.1109/ROMAN.2006.314397 [Google Scholar]
  47. Nass, C., Fogg, B. J., & Moon, Y.
    (1996) Can computers be teammates?International Journal of Human-Computer Studies, 45(6), 669–678. 10.1006/ijhc.1996.0073
    https://doi.org/10.1006/ijhc.1996.0073 [Google Scholar]
  48. Nass, C. I., Lombard, M., Henriksen, L., & Steuer, J.
    (1995) Anthropocentrism and computers. Behaviour & Information Technology, 14(4), 229–238. 10.1080/01449299508914636
    https://doi.org/10.1080/01449299508914636 [Google Scholar]
  49. Nass, C., & Moon, Y.
    (2000) Machines and mindlessness: Social responses to computers. Journal of Social Issues, 56(1), 81–103. 10.1111/0022‑4537.00153
    https://doi.org/10.1111/0022-4537.00153 [Google Scholar]
  50. Neave, N., Jackson, R., Saxton, T., & Hönekopp, J.
    (2015) The influence of anthropomorphic tendencies on human hoarding behaviours. Personality and Individual Differences, 72, 214–219. doi:  10.1016/j.paid.2014.08.041
    https://doi.org/10.1016/j.paid.2014.08.041 [Google Scholar]
  51. Neff, K. D.
    (2003) The Development and Validation of a Scale to Measure Self-Compassion. Self and Identity, 2(3), 223–250. doi:  10.1080/15298860309027
    https://doi.org/10.1080/15298860309027 [Google Scholar]
  52. Nomura, T., Kanda, T., & Suzuki, T.
    (2006) Experimental investigation into influence of negative attitudes toward robots on human–robot interaction. Ai & Society, 20(2), 138–150. 10.1007/s00146‑005‑0012‑7
    https://doi.org/10.1007/s00146-005-0012-7 [Google Scholar]
  53. Nomura, T., Kanda, T., Suzuki, T., & Kato, K.
    (2008) Prediction of Human Behavior in Human–Robot Interaction Using Psychological Scales for Anxiety and Negative Attitudes Toward Robots. Robotics, IEEE Transactions On, 24(2), 442–451. 10.1109/TRO.2007.914004
    https://doi.org/10.1109/TRO.2007.914004 [Google Scholar]
  54. Nomura, T., Suzuki, T., Kanda, T., & Kato, K.
    (2006a) Measurement of anxiety toward robots. Robot and Human Interactive Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium On, 372–377. Retrieved fromieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4107836. 10.1109/ROMAN.2006.314462
    https://doi.org/10.1109/ROMAN.2006.314462 [Google Scholar]
  55. (2006b) Measurement of negative attitudes toward robots. Interaction Studies, 7(3), 437–454. 10.1075/is.7.3.14nom
    https://doi.org/10.1075/is.7.3.14nom [Google Scholar]
  56. O’Connor, B. P.
    (2000) SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, 32(3), 396–402.
    [Google Scholar]
  57. Ogawa, K., Nishio, S., Koda, K., Taura, K., Minato, T., Ishii, C. T., & Ishiguro, H.
    (2011) Telenoid: Tele-presence android for communication. ACM SIGGRAPH 2011 Emerging Technologies, 15. Retrieved fromdl.acm.org/citation.cfm?id=2048274. 10.1145/2048259.2048274
    https://doi.org/10.1145/2048259.2048274 [Google Scholar]
  58. Poland, B. D.
    (2002) Transcription quality. InJ. F. Gubrium & J. A. Holstein (Eds.), From the individual interview to the interview society. SAGE.
    [Google Scholar]
  59. Public attitudes towards robots. Special Eurobarometer 382
    Public attitudes towards robots. Special Eurobarometer 382 (2012) Retrieved fromec.europa.eu/public_opinion/archives/ebs/ebs_382_en.pdf
  60. Rocks, C., Jenkins, S., Studley, M., & McGoran, D.
    (2009) Heart robot: a public engagement project. Interaction Studies, 10, 427–452. 10.1075/is.10.3.07roc
    https://doi.org/10.1075/is.10.3.07roc [Google Scholar]
  61. Rodogno
    Rodogno (2015) Attachment and Moral Psychology. InJ. Seibt & J. Garsdal (Eds.), Foundational Research on Values, Conflicts, and Intercultural Thought. Ontos Verlag/De Gruyter.
    [Google Scholar]
  62. Ruxton, G. D.
    (2006) Forum: The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology, 17(4), 688–690. doi:  10.1093/beheco/ark016
    https://doi.org/10.1093/beheco/ark016 [Google Scholar]
  63. Saldaña, J.
    (2009) The coding manual for qualitative researchers. Los Angeles, Calif: Sage.
    [Google Scholar]
  64. Schermerhorn, P., Scheutz, M., & Crowell, C. R.
    (2008) Robot social presence and gender: Do females view robots differently than males?2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), 263–270. doi:  10.1145/1349822.1349857
    https://doi.org/10.1145/1349822.1349857 [Google Scholar]
  65. Schuman, H., & Presser, S.
    (1996) Questions and Answers in Attitude Surveys: Experiments on Question Form, Wording, and Context. SAGE.
    [Google Scholar]
  66. Seibt, J., & Vestergaard, C.
    (2018) Fair Proxy Communication: Using Social Robots to Modify the Mechanisms of Implicit Social Cognition. Research Ideas and Outcomes, 4, e31827. doi:  10.3897/rio.4.e31827
    https://doi.org/10.3897/rio.4.e31827 [Google Scholar]
  67. Simon, S. J., & Peppas, S. C.
    (2005) Attitudes towards product website design: A study of the effects of gender. Journal of Marketing Communications, 11(2), 129–144. doi:  10.1080/1352726042000286507
    https://doi.org/10.1080/1352726042000286507 [Google Scholar]
  68. Singer, P.
    (1995) Animal liberation. Random House.
    [Google Scholar]
  69. Smedegaard, C. V.
    (n.d.). Reframing the Role of Novelty within Social HRI: from Noise to Information. In Press 2019, (14th annual ACM/IEEE International Conference on Human-Robot Interaction). 10.1109/HRI.2019.8673219
    https://doi.org/10.1109/HRI.2019.8673219 [Google Scholar]
  70. Spreng, R. N., McKinnon, M. C., Mar, R. A., & Levine, B.
    (2009) The Toronto Empathy Questionnaire. Journal of Personality Assessment, 91(1), 62–71. doi:  10.1080/00223890802484381
    https://doi.org/10.1080/00223890802484381 [Google Scholar]
  71. Tung, F.-W.
    (2011) Influence of Gender and Age on the Attitudes of Children towards Humanoid Robots. Human-Computer Interaction. Users and Applications, 637–646. doi:  10.1007/978‑3‑642‑21619‑0_76
    https://doi.org/10.1007/978-3-642-21619-0_76 [Google Scholar]
  72. Turkle, S.
    (2011) Alone together. New York: Basic Books.
    [Google Scholar]
  73. Vaughan, G., & Hogg, M. A.
    (2005) Introduction to social psychology. Retrieved fromespace.library.uq.edu.au/view/UQ:40925
    [Google Scholar]
  74. Waytz, A., Cacioppo, J., & Epley, N.
    (2010) Who Sees Human? The Stability and Importance of Individual Differences in Anthropomorphism. Perspectives on Psychological Science, 5(3), 219–232. doi:  10.1177/1745691610369336
    https://doi.org/10.1177/1745691610369336 [Google Scholar]
  75. Weiss, A., Bernhaupt, R., Lankes, M., & Tscheligi, M.
    (2009) The USUS Evaluation Framework for Human-Robot Interaction.
    [Google Scholar]
  76. Złotowski, J., Sumioka, H., Eyssel, F., Nishio, S., Bartneck, C., & Ishiguro, H.
    (2018) Model of Dual Anthropomorphism: The Relationship Between the Media Equation Effect and Implicit Anthropomorphism. International Journal of Social Robotics, 10(5), 701–714. doi:  10.1007/s12369‑018‑0476‑5
    https://doi.org/10.1007/s12369-018-0476-5 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.18055.fle
Loading
/content/journals/10.1075/is.18055.fle
Loading

Data & Media loading...

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error