1887
Volume 20, Issue 3
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Social robots as companions play an increasingly important role in our everyday life. However, reaching the full potential of social robots and the interaction between humans and robots requires permanent collection and processing of personal data of users, e.g. video and audio data for image and speech recognition. In order to foster user acceptance, trust and to address legal requirements as the General Data Protection Regulation of the EU, privacy needs to be integrated in the design process of social robots. The Privacy by Design approach by Cavoukian indicates the relevance of a privacy-respecting development and outlines seven abstract principle.

In this paper two methods as a hands-on guideline to fulfill the principles are presented and discussed in the content of the Privacy by Design approach. Privacy risks of a typical robot scenario are identified, analyzed and solutions are proposed on the basis of the and the .

Loading

Article metrics loading...

/content/journals/10.1075/is.18063.heu
2019-11-18
2019-12-14
Loading full text...

Full text loading...

References

  1. Alaiad, A., & Zhou, L.
    (2014) The determinants of home healthcare robots adoption: An empirical investigation. International journal of medical informatics, 83(11), 825–840. doi:  10.1016/j.ijmedinf.2014.07.003
    https://doi.org/10.1016/j.ijmedinf.2014.07.003 [Google Scholar]
  2. Broadbent, E., Stafford, R., & MacDonald, B.
    (2009) Acceptance of healthcare robots for the older population: Review and future directions. International Journal of Social Robotics, 1 (4), 319. 10.1007/s12369‑009‑0030‑6
    https://doi.org/10.1007/s12369-009-0030-6 [Google Scholar]
  3. Butler, D. J., Huang, J., Roesner, F., & Cakmak, M.
    (2015) The privacy-utility tradeoff for remotely teleoperated robots. InProceedings of the tenth annual ACM/IEEE international conference on human-robot interaction (pp.27–34). ACM.
    [Google Scholar]
  4. Caine, K., Šabanovic, S., & Carter, M.
    (2012) The effect of monitoring by cameras and robots on the privacy enhancing behaviors of older adults, 343–350. doi:  10.1145/2157689.2157807
    https://doi.org/10.1145/2157689.2157807 [Google Scholar]
  5. Caine, K. E., Zimmerman, C. Y., Schall-Zimmerman, Z., Hazlewood, W. R., Camp, L. J., Connelly, K. H., … Shankar, K.
    (2011) Digiswitch: A device to allow older adults to monitor and direct the collection and transmission of health information collected at home. Journal of medical systems, 35(5), 1181–1195. 10.1007/s10916‑011‑9722‑1
    https://doi.org/10.1007/s10916-011-9722-1 [Google Scholar]
  6. Cavoukian, A.,
    (2009) Privacy by design: The 7 foundational principles. Information and Privacy Commissioner of Ontario, Canada, 5. doi:  10.1007/s12394‑010‑0062‑y
    https://doi.org/10.1007/s12394-010-0062-y [Google Scholar]
  7. Cerrudo, C., & Apa, L.
    (2017) Hacking robots before skynet. IO Active Website.
    [Google Scholar]
  8. Denning, T., Matuszek, C., Koscher, K., Smith, J. R., & Kohno, T.
    (2009) A spotlight on security and privacy risks with future household robots: attacks and lessons. InProceedings of the 11th international conference on ubiquitous computing (pp.105–114). ACM.
    [Google Scholar]
  9. Finn, R. L., Wright, D., & Friedewald, M.
    (2013) Seven types of privacy. InEuropean data protection: coming of age (pp.3–32). Springer. 10.1007/978‑94‑007‑5170‑5_1
    https://doi.org/10.1007/978-94-007-5170-5_1 [Google Scholar]
  10. Gould, J. D., & Lewis, C.
    (1985) Designing for usability: key principles and what designers think. Communications of the ACM, 28(3), 300–311. 10.1145/3166.3170
    https://doi.org/10.1145/3166.3170 [Google Scholar]
  11. Grönvall, E., & Kyng, M.
    (2013) On participatory design of home-based healthcare. Cognition, technology & work, 15(4), 389–401. doi:  10.1007/s10111‑012‑0226‑7
    https://doi.org/10.1007/s10111-012-0226-7 [Google Scholar]
  12. Hansen, M., Jensen, M., & Rost, M.
    (2015) Protection goals for privacy engineering. InSecurity and privacy workshops (spw), 2015 IEEE (pp.159–166). IEEE. 10.1109/SPW.2015.13
    https://doi.org/10.1109/SPW.2015.13 [Google Scholar]
  13. Heuer, T., Schiering, I., & Gerndt, R.
    (2019) Me and my robot – sharing information with a new friend. InPrivacy and identity management. fairness, accountability and transparency in the age of big data. ifip advances in information and communication technology. Springer (to appear). 10.1007/978‑3‑030‑16744‑8_13
    https://doi.org/10.1007/978-3-030-16744-8_13 [Google Scholar]
  14. Hong, J. I., Ng, J. D., Lederer, S., & Landay, J. A.
    (2004) Privacy risk models for designing privacy-sensitive ubiquitous computing systems. InProceedings of the 5th conference on designing interactive systems: processes, practices, methods, and techniques (pp.91–100). ACM.
    [Google Scholar]
  15. Hubers, A., Andrulis, E., Scott, W. D., Scott, L., Stirrat, T., Tran, D., … Grimm, C.
    (2015) Video Manipulation Techniques for the Protection of Privacy in Remote Presence Systems. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts – HRI’15 Extended Abstracts, 59–60. Retrieved fromdl.acm.org/citation.cfm?doid=2701973.270204810.1145/2701973.2702048
    https://doi.org/10.1145/2701973.2702048 [Google Scholar]
  16. Iachello, G., & Hong, J.
    (2007) End-User Privacy in Human-Computer Interaction. Foundations and Trends® in Human-Computer Interaction, 1 (1), 1–137. Retrieved fromwww.nowpublishers.com/article/Details/HCI-00410.1561/1100000004
    https://doi.org/10.1561/1100000004 [Google Scholar]
  17. International Federation of Robotics
    International Federation of Robotics (2018) Executive summary world robotics 2018 service robots. Retrieved fromhttps://ifr.org/downloads/press2018/Executive_Summary_WR_Service_Robots_2018.pdf
  18. Jana, S., Narayanan, A., & Shmatikov, V.
    (2013) A scanner darkly: Protecting user privacy from perceptual applications. Proceedings – IEEE Symposium on Security and Privacy, 349–363. doi:  10.1109/SP.2013.31
    https://doi.org/10.1109/SP.2013.31 [Google Scholar]
  19. Kitahara, I., Kogure, K., & Hagita, N.
    (2004) Stealth vision for protecting privacy. Proceedings – International Conference on Pattern Recognition, 4, 404–407. doi:  10.1109/ICPR.2004.1333788
    https://doi.org/10.1109/ICPR.2004.1333788 [Google Scholar]
  20. Lee, H. R., Šabanović, S., Chang, W.-L., Nagata, S., Piatt, J., Bennett, C., & Hakken, D.
    (2017) Steps toward participatory design of social robots: Mutual learning with older adults with depression. InProceedings of the 2017 ACM/IEEE international conference on human-robot interaction (pp.244–253). ACM.
    [Google Scholar]
  21. Lee, M. K., Tang, K. P., Forlizzi, J., & Kiesler, S.
    (2011) Understanding Users’ Perception of Privacy in Human-Robot Interaction. HRI ’11 Proceedings of the 6th international conference on Human-robot interaction, 181–182. Retrieved fromdl.acm.org/citation.cfm?id=195772110.1145/1957656.1957721
    https://doi.org/10.1145/1957656.1957721 [Google Scholar]
  22. Leenes, R., Palmerini, E., Koops, B.-J., Bertolini, A., Salvini, P., & Lucivero, F.
    (2017) Regulatory challenges of robotics: some guidelines for addressing legal and ethical issues. Law, Innovation and Technology, 9(1), 1–44. 10.1080/17579961.2017.1304921
    https://doi.org/10.1080/17579961.2017.1304921 [Google Scholar]
  23. Lera, F. J. R., Llamas, C. F., Guerrero, Á. M., & Olivera, V. M.
    (2017) Cybersecurity of robotics and autonomous systems: Privacy and safety. InRobotics-legal, ethical and socioeconomic impacts. In Tech.. 10.5772/intechopen.69796
    https://doi.org/10.5772/intechopen.69796 [Google Scholar]
  24. Pagallo, U.
    (2013) Robots in the cloud with privacy: A new threat to data protection?Computer Law and Security Review, 29(5), 501–508. doi:  10.1016/j.clsr.2013.07.012
    https://doi.org/10.1016/j.clsr.2013.07.012 [Google Scholar]
  25. Raval, N., Srivastava, A., Lebeck, K., Cox, L., & Machanavajjhala, A.
    (2014) Markit: Privacy markers for protecting visual secrets. InProceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing: Adjunct publication (pp.1289–1295). ACM.
    [Google Scholar]
  26. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (general data protection eegulation). (n.d.)., 1–88.
    [Google Scholar]
  27. Šabanović, S., Chang, W.-L., Bennett, C. C., Piatt, J. A., & Hakken, D.
    (2015) A robot of my own: participatory design of socially assistive robots for independently living older adults diagnosed with depression. InInternational conference on human aspects of it for the aged population (pp.104–114). Springer. 10.1007/978‑3‑319‑20892‑3_11
    https://doi.org/10.1007/978-3-319-20892-3_11 [Google Scholar]
  28. Siljee, J.
    (2015) Privacy transparency patterns. InProceedings of the 20th european conference on pattern languages of programs (pp.52:1–52:11). New York, NY, USA: ACM. Retrieved from10.1145/2855321.2855374
    https://doi.org/10.1145/2855321.2855374 [Google Scholar]
  29. Solove, D. J.
    (2004) The digital person: Technology and privacy in the information age. NyU Press.
    [Google Scholar]
  30. Syrdal, D. S., Walters, M. L., Otero, N., Koay, K. L., & Dautenhahn, K.
    (2007) He knows when you are sleeping-privacy and the personal robot companion. InProc. workshop human implications of human-robot interaction, association for the advancement of artificial intelligence (aaai’07) (pp.28–33).
    [Google Scholar]
  31. Tobe, F.
    (2017) Robotics industry growing faster than expected. Retrieved fromhttps://www.therobotreport.com/robotics-industry-growing-faster-than-expected
    [Google Scholar]
  32. Vargas, P. A., Ho, W. C., Lim, M., Enz, S., & Aylett, R.
    (2009) To forget or not to forget: towards a roboethical memory control. Killer Robots or Friendly Fridges: the Social Understanding of Artificial Intelligence, AISB, 9, 18–23.
    [Google Scholar]
  33. Yong, S., Lindskog, D., Ruhl, R., & Zavarsky, P.
    (2011) Risk mitigation strategies for mobile wi-fi robot toys from online pedophiles. InPrivacy, security, risk and trust (passat) and 2011 IEEE third inernational conference on social computing (socialcom), 2011 IEEE third international conference on (pp.1220–1223). IEEE. 10.1109/PASSAT/SocialCom.2011.194
    https://doi.org/10.1109/PASSAT/SocialCom.2011.194 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.18063.heu
Loading
/content/journals/10.1075/is.18063.heu
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error