1887
Volume 21, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

A wealth of social psychology studies suggests that moving in synchrony with another person can positively influence their likeability and prosocial behavior towards them. Recently, human-robot interaction (HRI) researchers have started to develop real-time, adaptive synchronous movement algorithms for social robots. However, little is known how socially beneficial synchronous movements with a robot actually are. We predicted that moving in synchrony with a robot would improve its likeability and participants’ social motivation towards the robot, as measured by the number of questions asked during a free interaction period. Using a between-subjects design, we implemented the synchrony manipulation via a drawing task. Contrary to predictions, we found no evidence that participants who moved in synchrony with the robot rated it as more likeable or asked it more questions. By including validated behavioral and neural measures, future studies can generate a better and more objective estimation of synchrony’s effects on rapport with social robots.

Loading

Article metrics loading...

/content/journals/10.1075/is.19004.hen
2020-01-24
2020-04-01
Loading full text...

Full text loading...

References

  1. Bartneck, C., Kuli, D., & Croft, E.
    (2009) Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots, 71–81. doi:  10.1007/s12369‑008‑0001‑3
    https://doi.org/10.1007/s12369-008-0001-3 [Google Scholar]
  2. Berniere, F., Reznick, S., & Rosenthal, R.
    (1988) Synchrony, Pseudosynchrony and Dissynchrony Measuring the Entrainment Process in Mother Infant Interactions. 10.1037//0022‑3514.54.2.243
    https://doi.org/10.1037//0022-3514.54.2.243 [Google Scholar]
  3. Broadbent, E.
    (2017) Interactions With Robots: The Truths We Reveal About Ourselves. Annu. Rev. Psychol, 68(9), 1–926. doi:  10.1146/annurev‑psych‑010416‑043958
    https://doi.org/10.1146/annurev-psych-010416-043958 [Google Scholar]
  4. Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T.
    (2012) The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231–238. doi:  10.1016/j.tics.2012.02.007
    https://doi.org/10.1016/j.tics.2012.02.007 [Google Scholar]
  5. Cross, L., Wilson, A. D., & Golonka, S.
    (2016) How moving together brings us together: When coordinated rhythmic movement affects cooperation. Frontiers in Psychology, 7(DEC), 1–13. doi:  10.3389/fpsyg.2016.01983
    https://doi.org/10.3389/fpsyg.2016.01983 [Google Scholar]
  6. Darling, K.
    (2015) Who’s Jonny.
    [Google Scholar]
  7. Duffy, B. R.
    (2000) The social robot paradox. PhD Thesis, (November), 288. doi:https://doi.org/10.1.1.79.3188
    [Google Scholar]
  8. Duffy, B. R., & Joue, G.
    (2005) The Paradox of Social Robotics : A Discussion. AAAI Fall 2005 Symposium on Machine Ethics, Hyatt Regency.
    [Google Scholar]
  9. Duffy, B. R., Rooney, C. F. B., Hare, G. M. P. O., & Donoghue, R. P. S. O.
    (1999) What is a Social Robot ?Computer, 1–3.
    [Google Scholar]
  10. Eriksson, J., Matarić, M. J., & Winstein, C. J.
    (2005) Hands-off assistive robotics for post-stroke arm rehabilitation. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics 2005, 21–24. doi:  10.1109/ICORR.2005.1501042
    https://doi.org/10.1109/ICORR.2005.1501042 [Google Scholar]
  11. Fasola, J., & Matarić, M. J.
    (2012) Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proceedings of the IEEE, 100(8), 2512–2526. doi:  10.1109/JPROC.2012.2200539
    https://doi.org/10.1109/JPROC.2012.2200539 [Google Scholar]
  12. Feil-Seifer, D., & Matarić, M. J.
    (2011) Socially assistive robotics. Robotics & Automation Magazine, IEEE, 18(1), 24–31. doi:  10.1109/ICORR.2005.1501143
    https://doi.org/10.1109/ICORR.2005.1501143 [Google Scholar]
  13. Hove, M. J., & Risen, J. L.
    (2009) It’s All in the Timing: Interpersonal Synchrony Increases Affiliation. Social Cognition, 27(6), 949–960. doi:  10.1521/soco.2009.27.6.949
    https://doi.org/10.1521/soco.2009.27.6.949 [Google Scholar]
  14. Irfan, B., Kennedy, J., Senft, E., & Belpaeme, T.
    (2018) Social psychology and Human-Robot Interaction : an Uneasy Marriage. 10.1145/3173386.3173389
    https://doi.org/10.1145/3173386.3173389 [Google Scholar]
  15. Kasparov, G.
    (2017) Deep thinking: where machine intelligence ends and human creativity begins. PublicAffairs.
    [Google Scholar]
  16. Kokal, I., Engel, A., Kirschner, S., & Keysers, C.
    (2011) Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment-if the rhythm comes easily. PLoS One, 6(11), e27272. 10.1371/journal.pone.0027272
    https://doi.org/10.1371/journal.pone.0027272 [Google Scholar]
  17. Lehmann, H., Saez-Pons, J., Syrdal, D. S., & Dautenhahn, K.
    (2015) In good company? Perception of movement synchrony of a non-anthropomorphic robot. PLoS ONE, 10(5), 1–16. doi:  10.1371/journal.pone.0127747
    https://doi.org/10.1371/journal.pone.0127747 [Google Scholar]
  18. Lorenz, T., Weiss, A., & Hirche, S.
    (2016) Synchrony and Reciprocity: Key Mechanisms for Social Companion Robots in Therapy and Care. International Journal of Social Robotics, 8(1), 125–143. doi:  10.1007/s12369‑015‑0325‑8
    https://doi.org/10.1007/s12369-015-0325-8 [Google Scholar]
  19. Mogan, R., Fischer, R., & Bulbulia, J. A.
    (2017) To be in synchrony or not? A meta-analysis of synchrony’s effects on behavior, perception, cognition and affect. Journal of Experimental Social Psychology, 72, 13–20. 10.1016/j.jesp.2017.03.009
    https://doi.org/10.1016/j.jesp.2017.03.009 [Google Scholar]
  20. Mörtl, A., Lorenz, T., & Hirche, S.
    (2014) Rhythm patterns interaction – Synchronization behavior for human-robot joint action. PLoS ONE, 9(4). doi:  10.1371/journal.pone.0095195
    https://doi.org/10.1371/journal.pone.0095195 [Google Scholar]
  21. Müller, B. C. N., Brass, M., Kühn, S., Tsai, C. C., Nieuwboer, W., Dijksterhuis, A., & van Baaren, R. B.
    (2011) When Pinocchio acts like a human, a wooden hand becomes embodied. Action co-representation for non-biological agents. Neuropsychologia, 49(5), 1373–1377. doi:  10.1016/j.neuropsychologia.2011.01.022
    https://doi.org/10.1016/j.neuropsychologia.2011.01.022 [Google Scholar]
  22. Nomura, T., Kanda, T., & Suzuki, T.
    (2006) Experimental investigation into influence of negative attitudes toward robots on human–robot interaction. Ai & Society, 20(2), 138–150. 10.1007/s00146‑005‑0012‑7
    https://doi.org/10.1007/s00146-005-0012-7 [Google Scholar]
  23. Prescott, T. J., Epton, T., Evers, V., Mckee, K., Webb, T., Benyon, D., … Dario, P.
    (2012) Robot Companions For Citizens: Roadmapping The Potential For Future Robots In Empowering Older People. Proceedings of the Conference on Bridging Research in Ageing and ICT Development (BRAID), (May). Retrieved fromwww.iidi.napier.ac.uk/c/publications/publicationid/13371986
    [Google Scholar]
  24. Rennung, M., & Göritz, A. S.
    (2016) Prosocial consequences of interpersonal synchrony: A Meta-Analysis. Zeitschrift Fur Psychologie / Journal of Psychology, 224(3), 168–189. doi:  10.1027/2151‑2604/a000252
    https://doi.org/10.1027/2151-2604/a000252 [Google Scholar]
  25. Riek, L. D.
    (2014) The social co-robotics problem space: Six key challenges. Robotics Challenges and Vision (RCV2013).
    [Google Scholar]
  26. Robins, B., Dautenhahn, K., Boekhorst, R., & Billard, A.
    (2005) Robotic Assistants in Therapy and Education of Children with Autism: Can a Small Humanoid Robot Help Encourage Social Interaction Skills?Universal Access in the Information Society, 4(2), 105–120. 10.1007/s10209‑005‑0116‑3
    https://doi.org/10.1007/s10209-005-0116-3 [Google Scholar]
  27. Sandini, G., Mohan, V., Sciutti, A., & Morasso, P.
    (2018) Social Cognition for Human-Robot Symbiosis-Challenges and Building Blocks. Frontiers in neurorobotics, 12, 34. 10.3389/fnbot.2018.00034
    https://doi.org/10.3389/fnbot.2018.00034 [Google Scholar]
  28. Shen, Q., Dautenhahn, K., Saunders, J., & Kose, H.
    (2015) Can real-time, adaptive human–robot motor coordination improve humans’ overall perception of a robot?. IEEE Transactions on Autonomous Mental Development, 7(1), 52–64. 10.1109/TAMD.2015.2398451
    https://doi.org/10.1109/TAMD.2015.2398451 [Google Scholar]
  29. Syrdal, D. S., Dautenhahn, K., Koay, K. L., & Walters, M. L.
    (2009) The negative attitudes towards robots scale and reactions to robot behaviour in a live human-robot interaction study. Adaptive and Emergent Behaviour and Complex Systems.
    [Google Scholar]
  30. Wheatley, T., Kang, O., Parkinson, C., & Looser, C. E.
    (2012) From Mind Perception to Mental Connection Synchrony as a Mechanism for Social Understanding. Social and Personality Psychology Compass, 6(8), 589–606. doi:  10.1111/j.1751‑9004.2012.00450.x
    https://doi.org/10.1111/j.1751-9004.2012.00450.x [Google Scholar]
  31. Wiese, E., Metta, G., & Wykowska, A.
    (2017) Robots as intentional agents: Using neuroscientific methods to make robots appear more social. Frontiers in Psychology, 8(OCT), 1–19. doi:  10.3389/fpsyg.2017.01663
    https://doi.org/10.3389/fpsyg.2017.01663 [Google Scholar]
  32. Wiese, E., Wykowska, A., Zwickel, J., & Müller, H. J.
    (2012) I See What You Mean: How Attentional Selection Is Shaped by Ascribing Intentions to Others. PLoS ONE, 7(9), 1–7. doi:  10.1371/journal.pone.0045391
    https://doi.org/10.1371/journal.pone.0045391 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.19004.hen
Loading
/content/journals/10.1075/is.19004.hen
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error