1887
Volume 22, Issue 2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
GBP
Buy:£15.00 + Taxes

Abstract

Abstract

Recent research showed the potential benefits of robot-assisted therapy in treating children with Autism Spectrum Disorder. These children often have some form of Intellectual Disability (ID) too, but this has mainly been neglected by previous robotics research. This article presents an empirical evaluation of robot-assisted imitation training, where the child imitated the robot, integrated into the Treatment and Education of Autistic and related Communication handicapped Children (TEACCH) program. The sample included six hospitalized children with different levels of ID, from mild to profound. We applied mixed methods to assess their progress, during treatment and three months later. Results show increased Gross Motor Imitation skills in the children, except for those with profound ID and the therapists’ positive attitude towards the humanoid robot. Furthermore, the therapists suggest how a robot could be used to autonomously collect and analyze the information obtained in the rehabilitation training for a continuous evaluation of the participants.

Loading

Article metrics loading...

/content/journals/10.1075/is.21011.con
2022-02-28
2024-04-19
Loading full text...

Full text loading...

References

  1. Adams, A., & Robinson, P.
    (2011) An android head for social-emotional intervention for children with autism spectrum conditions. InAffective Computing and Intelligent Interaction (pp.183–190). Springer. 10.1007/978‑3‑642‑24571‑8_19
    https://doi.org/10.1007/978-3-642-24571-8_19 [Google Scholar]
  2. Alemi, M., Meghdari, A., Basiri, N. M., & Taheri, A.
    (2015) The effect of applying humanoid robots as teacher assistants to help iranian autistic pupils learn english as a foreign language. InInternational Conference on Social Robotics (pp.1–10). Springer. 10.1007/978‑3‑319‑25554‑5_1
    https://doi.org/10.1007/978-3-319-25554-5_1 [Google Scholar]
  3. American Psychiatric Association
    American Psychiatric Association (2013) DSM 5. American Journal of Psychiatry.
    [Google Scholar]
  4. Bainbridge, W. A., Hart, J. W., Kim, E. S., & Scassellati, B.
    (2011) The benefits of interactions with physically present robots over video-displayed agents. International Journal of Social Robotics, 3(1), 41–52. 10.1007/s12369‑010‑0082‑7
    https://doi.org/10.1007/s12369-010-0082-7 [Google Scholar]
  5. Blampied, N. M.
    (2013) Single-case research designs and the scientist-practitioner ideal in applied psychology. APA Handbook of Behavior Analysis, 1, 177–197. 10.1037/13937‑008
    https://doi.org/10.1037/13937-008 [Google Scholar]
  6. Bourke, J., De Klerk, N., Smith, T., & Leonard, H.
    (2016) Population-based prevalence of intellectual disability and autism spectrum disorders in Western Australia. Medicine (United States), 95(21), 1–8. doi:  10.1097/MD.0000000000003737
    https://doi.org/10.1097/MD.0000000000003737 [Google Scholar]
  7. Bowlby, J.
    (2005) A secure base: Clinical applications of attachment theory (Vol.393). Taylor & Francis.
    [Google Scholar]
  8. Cao, H. L., Esteban, P., Bartlett, M., Baxter, P. E., Belpaeme, T., Billing, E., … David, D.
    (2019) Robot-enhanced therapy: development and validation of a supervised autonomous robotic system for autism spectrum disorders therapy. IEEE Robotics and Automation Magazine. 10.1109/MRA.2019.2904121
    https://doi.org/10.1109/MRA.2019.2904121 [Google Scholar]
  9. Colton, M. B., Ricks, D. J., Goodrich, M. A., Dariush, B., Fujimura, K., & Fujiki, M.
    (2009) Toward therapist-in-the-loop assistive robotics for children with autism and specific language impairment. Autism, 24, 25.
    [Google Scholar]
  10. Coninx, A., Baxter, P., Oleari, E., Bellini, S., Bierman, B., Henkemans, O. B., … Espinoza, R. R.
    (2016) Towards long-term social child-robot interaction: using multi-activity switching to engage young users. Journal of Human-Robot Interaction, 5(1), 32–67. 10.5898/JHRI.5.1.Coninx
    https://doi.org/10.5898/JHRI.5.1.Coninx [Google Scholar]
  11. Conti, D., Cattani, A., Di Nuovo, S., & Di Nuovo, A.
    (2019) Are Future Psychologists Willing to Accept and Use a Humanoid Robot in Their Practice? Italian and English Students’ Perspective. Frontiers in Psychology, 10(September), 1–13. doi:  10.3389/fpsyg.2019.02138
    https://doi.org/10.3389/fpsyg.2019.02138 [Google Scholar]
  12. Conti, D., Cirasa, C., Di Nuovo, S., & Di Nuovo, A.
    (2020) “Robot, tell me a tale!”: A Social Robot as tool for Teachers in Kindergarten. Interaction Studies, 21(2), 220–242. 10.1075/is.18024.con
    https://doi.org/10.1075/is.18024.con [Google Scholar]
  13. Conti, D., Di Nuovo, S., Buono, S., & Di Nuovo, A.
    (2017) Robots in education and care of children with developmental disabilities: a study on acceptance by experienced and future professionals. International Journal of Social Robotics, 9, 51–62. doi:  10.1007/s12369‑016‑0359‑6
    https://doi.org/10.1007/s12369-016-0359-6 [Google Scholar]
  14. Conti, D., Di Nuovo, S., Buono, S., Trubia, G., & Di Nuovo, A.
    (2015) Use of Robotics to Stimulate Imitation in Children with Autism Spectrum Disorder: A Pilot Study in a Clinical Setting. InProceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication, ROMAN (pp.1–6). doi:  10.1109/ROMAN.2015.7333589
    https://doi.org/10.1109/ROMAN.2015.7333589 [Google Scholar]
  15. Conti, D., Trubia, G., Buono, S., Di Nuovo, S., & Di Nuovo, A.
    (2018) Evaluation of a Robot-Assisted Therapy for Children with Autism and Intellectual Disability. InLecture notes in computer science – Towards Autonomous Robotic Systems, Giuliani, M., Assaf, T. e Giannaccini, M. (eds) (pp.405–415). Cham: Springer. doi:  10.1007/978‑3‑319‑96728‑8_34
    https://doi.org/10.1007/978-3-319-96728-8_34 [Google Scholar]
  16. (2019) Affect Recognition in Autism: a single case study on integrating a humanoid robot in a standard therapy. QWERTY, 14(2), 66–87. 10.30557/QW000018
    https://doi.org/10.30557/QW000018 [Google Scholar]
  17. Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., … Varley, J.
    (2010) Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics, 125(1), e17–e23. 10.1542/peds.2009‑0958
    https://doi.org/10.1542/peds.2009-0958 [Google Scholar]
  18. Di Nuovo, A., Conti, D., Trubia, G., Buono, S., & Di Nuovo, S.
    (2018) Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics, 7(2), 25. doi:  10.3390/robotics7020025
    https://doi.org/10.3390/robotics7020025 [Google Scholar]
  19. Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R.
    (2012) The Clinical Use of Robots for Individuals with Autism Spectrum Disorders: A Critical Review. Research in Autism Spectrum Disorders, 6(1), 249–262. 10.1016/j.rasd.2011.05.006
    https://doi.org/10.1016/j.rasd.2011.05.006 [Google Scholar]
  20. DiPietro, J., Kelemen, A., Liang, Y., & Sik-Lanyi, C.
    (2019) Computer-and Robot-Assisted Therapies to Aid Social and Intellectual Functioning of Children with Autism Spectrum Disorder. Medicina, 55(8), 440. 10.3390/medicina55080440
    https://doi.org/10.3390/medicina55080440 [Google Scholar]
  21. Duquette, A., Michaud, F., & Mercier, H.
    (2008) Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Autonomous Robots, 24, 147–157. doi:  10.1007/s10514‑007‑9056‑5
    https://doi.org/10.1007/s10514-007-9056-5 [Google Scholar]
  22. Edwards, L. A.
    (2014) A meta-analysis of imitation abilities in individuals with autism spectrum disorders. Autism Research, 7(3), 363–380. doi:  10.1002/aur.1379
    https://doi.org/10.1002/aur.1379 [Google Scholar]
  23. Esteban, P. G., Baxter, P., Belpaeme, T., Billing, E., Cai, H., Cao, H.-L., … De Beir, A.
    (2017) How to build a supervised autonomous system for robot-enhanced therapy for children with autism spectrum disorder. Paladyn, Journal of Behavioral Robotics, 8(1), 18–38. 10.1515/pjbr‑2017‑0002
    https://doi.org/10.1515/pjbr-2017-0002 [Google Scholar]
  24. Ferrari, E., Robins, B., & Dautenhahn, K.
    (2009) Therapeutic and educational objectives in robot assisted play for children with autism. InRobot and Human Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium on (pp.108–114). IEEE. 10.1109/ROMAN.2009.5326251
    https://doi.org/10.1109/ROMAN.2009.5326251 [Google Scholar]
  25. Goldsmith, T. R., & LeBlanc, L. A.
    (2004) Use of technology in interventions for children with autism. Journal of Early and Intensive Behavior Intervention, 1(2), 166. 10.1037/h0100287
    https://doi.org/10.1037/h0100287 [Google Scholar]
  26. Kazdin, A. E.
    (2010) Problem-solving skills training and parent management training for oppositional defiant disorder and conduct disorder. Evidence-Based Psychotherapies for Children and Adolescents, 211–226.
    [Google Scholar]
  27. Kim, E. S., Paul, R., Shic, F., & Scassellati, B.
    (2012) Bridging the Research Gap: Making HRI Useful to Individuals with Autism. Journal of Human-Robot Interaction. doi:  10.5898/JHRI.1.1.Kim
    https://doi.org/10.5898/JHRI.1.1.Kim [Google Scholar]
  28. Kozima, H., Nakagawa, C., & Yasuda, Y.
    (2005) Interactive robots for communication-care: a case-study in autism therapy. InIEEE International Workshop on Robot and Human Interactive Communication, 2005. ROMAN 2005. 10.1109/ROMAN.2005.1513802
    https://doi.org/10.1109/ROMAN.2005.1513802 [Google Scholar]
  29. Landa, R.
    (2007) Early communication development and intervention for children with autism. Mental retardation and developmental disabilities research reviews, 13(1), 16–25. 10.1002/mrdd.20134
    https://doi.org/10.1002/mrdd.20134 [Google Scholar]
  30. Leyzberg, D., Spaulding, S., & Scassellati, B.
    (2014) Personalizing robot tutors to individuals’ learning differences. InProceedings of the 2014 ACM/IEEE international conference on Human-robot interaction (pp.423–430). ACM. 10.1145/2559636.2559671
    https://doi.org/10.1145/2559636.2559671 [Google Scholar]
  31. Lord, C., Rutter, M., & Le Couteur, A.
    (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. 10.1007/BF02172145
    https://doi.org/10.1007/BF02172145 [Google Scholar]
  32. Mesibov, G. B., Shea, V., & Schopler, E.
    (2004) The TEACCH approach to autism spectrum disorders. Springer Science & Business Media. 10.1007/978‑0‑306‑48647‑0
    https://doi.org/10.1007/978-0-306-48647-0 [Google Scholar]
  33. Oeseburg, B., Dijkstra, G. J., Groothoff, J. W., Reijneveld, S. A., & Jansen, D. E. M. C.
    (2011) Prevalence of chronic health conditions in children with intellectual disability: a systematic literature review. Intellectual and Developmental Disabilities, 49(2), 59–85. 10.1352/1934‑9556‑49.2.59
    https://doi.org/10.1352/1934-9556-49.2.59 [Google Scholar]
  34. Pioggia, G., Sica, M. L., Ferro, M., Igliozzi, R., Muratori, F., Ahluwalia, A., & Rossi, D. De
    (2007) Human-robot interaction in autism: FACE, an android-based social therapy. InRobot and Human interactive Communication, 2007. RO-MAN 2007. The 16th IEEE International Symposium on (pp.605–612). IEEE. 10.1109/ROMAN.2007.4415156
    https://doi.org/10.1109/ROMAN.2007.4415156 [Google Scholar]
  35. Rabbitt, S. M., Kazdin, A. E., & Scassellati, B.
    (2015) Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clinical psychology review, 35, 35–46. doi:  10.1016/j.cpr.2014.07.001
    https://doi.org/10.1016/j.cpr.2014.07.001 [Google Scholar]
  36. Robins, B., Dautenhahn, K., Ferrari, E., Kronreif, G., Prazak-Aram, B., Marti, P., … Laudanna, E.
    (2012) Scenarios of robot-assisted play for children with cognitive and physical disabilities. Interaction Studies, 13(2), 189–234. doi:  10.1075/is.13.2.03rob
    https://doi.org/10.1075/is.13.2.03rob [Google Scholar]
  37. Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K.
    (2004) Robot-mediated joint attention in children with autism: A case study in robot-human interaction. Interaction Studies, 5(2), 161–198. 10.1075/is.5.2.02rob
    https://doi.org/10.1075/is.5.2.02rob [Google Scholar]
  38. Roid, G. H., & Miller, L. J.
    (2002) Leiter International Performance Scale-Revised (Leiter-R). Wood Dale, IL.
    [Google Scholar]
  39. Ropers, H. H.
    (2010) Genetics of early onset cognitive impairment. Annual Review of Genomics and Human Genetics, 11, 161–187. 10.1146/annurev‑genom‑082509‑141640
    https://doi.org/10.1146/annurev-genom-082509-141640 [Google Scholar]
  40. Scassellati, B.
    (2007) How social robots will help us to diagnose, treat, and understand autism. Robotics Research, 552–563. doi:  10.1007/978‑3‑540‑48113‑3_47
    https://doi.org/10.1007/978-3-540-48113-3_47 [Google Scholar]
  41. Schopler, E., Lansing, M. D., Reichler, R. J., & Marcus, L. M.
    (2004) Psychoeducational Profile Third Edition (PEP-3). Pro-Ed, USA.
    [Google Scholar]
  42. Schopler, E., Van Bourgondien, M., Wellman, J., & Love, S.
    (2010) Childhood Autism Rating Scale – Second edition (CARS2): Manual. Los Angeles: Western Psychological Services.
    [Google Scholar]
  43. Schwartz, C. E., & Neri, G.
    (2012) Autism and intellectual disability: two sides of the same coin. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics (Vol.160, pp.89–90). Wiley Online Library. 10.1002/ajmg.c.31329
    https://doi.org/10.1002/ajmg.c.31329 [Google Scholar]
  44. Sidman, M.
    (1960) Tactics of scientific research.
    [Google Scholar]
  45. Skinner, B. F.
    (1957) Verbal learning. New York: Appleton-Century-Crofts.
    [Google Scholar]
  46. Sundberg, M. L.
    (2008) Verbal behavior milestones assessment and placement program: The VB-MAPP. Concord, CA: AVB Press.
    [Google Scholar]
  47. Valsiner, J.
    (1986) Between groups and individuals. InThe individual subject and scientific psychology (pp.113–151). Springer. 10.1007/978‑1‑4899‑2239‑7_6
    https://doi.org/10.1007/978-1-4899-2239-7_6 [Google Scholar]
  48. Varrasi, S., Di Nuovo, S., Conti, D., & Di Nuovo, A.
    (2018) A Social Robot for Cognitive Assessment. InHRI’18 Companion: Conference on ACM/IEEE International Conference on Human-Robot Interaction, March 5–8, 2018, Chicago, IL, USA (pp.269–270). doi:  10.1145/3173386.3176995
    https://doi.org/10.1145/3173386.3176995 [Google Scholar]
  49. Vygotsky, L.
    (1978) Interaction between learning and development. Readings on the Development of Children, 23(3), 34–41.
    [Google Scholar]
  50. Wainer, J., Dautenhahn, K., Robins, B., & Amirabdollahian, F.
    (2013) A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with Children with Autism. International Journal of Social Robotics, 6(1), 45–65. doi:  10.1007/s12369‑013‑0195‑x
    https://doi.org/10.1007/s12369-013-0195-x [Google Scholar]
  51. Wechsler, D.
    (2003) Wechsler intelligence scale for children–Fourth Edition (WISC-IV). San Antonio, TX: The Psychological Corporation.
    [Google Scholar]
  52. Williams, J. H. G., Whiten, A., & Singh, T.
    (2004) A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders. doi:  10.1023/B:JADD.0000029551.56735.3a
    https://doi.org/10.1023/B:JADD.0000029551.56735.3a [Google Scholar]
  53. Wong, C., Odom, S. L., Hume, K. A., Cox, A. W., Fettig, A., Kucharczyk, S., … Schultz, T. R.
    (2015) Evidence-based practices for children, youth, and young adults with autism spectrum disorder: A comprehensive review. Journal of Autism and Developmental Disorders, 45(7), 1951–1966. 10.1007/s10803‑014‑2351‑z
    https://doi.org/10.1007/s10803-014-2351-z [Google Scholar]
  54. Yoder, P., & Stone, W. L.
    (2006) Randomized comparison of two communication interventions for preschoolers with autism spectrum disorders. Journal of consulting and clinical psychology, 74(3), 426. 10.1037/0022‑006X.74.3.426
    https://doi.org/10.1037/0022-006X.74.3.426 [Google Scholar]
  55. Zubrycki, I., & Granosik, G.
    (2016) Understanding therapists’ needs and attitudes towards robotic support. the roboterapia project. International Journal of Social Robotics, 8(4), 553–563. 10.1007/s12369‑016‑0372‑9
    https://doi.org/10.1007/s12369-016-0372-9 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.21011.con
Loading
/content/journals/10.1075/is.21011.con
Loading

Data & Media loading...

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error