1887
Volume 23, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

In this article, we aim to evaluate the role of robots’ personality-driven behavioural patterns on users’ intention to use in an entertainment scenario. Toward such a goal, we designed two personalities: one introverted with an empathic and self-comparative interaction style, and the other extroverted with a provocative and other-comparative interaction style. To evaluate the proposed technology acceptance model, we conducted an experiment ( = 209) at a public venue where users were requested to play a game with the support of the TIAGo robot. Our findings show that the robot personality affects the acceptance model and three relevant drivers: perceived enjoyment, perceived usefulness, and social influence. The extroverted robot was perceived as more useful than the introverted, and participants who interacted with it were faster at solving the game. On the other hand, the introverted robot was perceived as more enjoyable but less useful than the extroverted, and participants who interacted with it made fewer mistakes. Taken together, these findings support the importance of designing proper robot personalities in influencing users’ acceptance, featuring that a given style can elicit a different driver of acceptance.

Loading

Article metrics loading...

/content/journals/10.1075/is.21019.and
2022-10-20
2023-12-03
Loading full text...

Full text loading...

References

  1. Akalin, N., Kristoffersson, A., and Loutfi, A.
    (2019) The Influence of Feedback Type in Robot-Assisted Training. Multimodal Technologies and Interaction, 3(4):67. 10.3390/mti3040067
    https://doi.org/10.3390/mti3040067 [Google Scholar]
  2. Aly, A. and Tapus, A.
    (2013) A model for synthesizing a combined verbal and nonverbal behavior based on personality traits in human-robot interaction. Proceedings of the 13th ACM/IEEE International Conference on Human-Robot Interaction, pages325–332. 10.1109/HRI.2013.6483606
    https://doi.org/10.1109/HRI.2013.6483606 [Google Scholar]
  3. Andriella, A., Huertas-Garcia, R., Forgas-Coll, S., Torras, C., and Alenyà, G.
    (2020a) Discovering SOCIABLE: Using a Conceptual Model to Evaluate the Legibility and Effectiveness of Backchannel Cues in an Entertainment Scenario. InProceedings of the 29th IEEE International Conference on Robot and Human Interactive Communication, pages752–759. 10.1109/RO‑MAN47096.2020.9223450
    https://doi.org/10.1109/RO-MAN47096.2020.9223450 [Google Scholar]
  4. Andriella, A., Siqueira, H., Fu, D., Magg, S., Barros, P., Wermter, S., Torras, C., and Alenyà, G.
    (2021) Do I Have a Personality? Endowing Care Robots with Context-Dependent Personality Traits. International Journal of Social Robotics, 13(8):2081–2102. 10.1007/s12369‑020‑00690‑5
    https://doi.org/10.1007/s12369-020-00690-5 [Google Scholar]
  5. Andriella, A., Suárez-Hernández, A., Segovia-Aguas, J., Torras, C., and Alenyà, G.
    (2019a) Natural Teaching of Robot-Assisted Rearranging Exercises for Cognitive Training. InProceedings of the 11th International Conference on Social Robotics, volume11876LNAI, pages611–621. Springer, Cham. 10.1007/978‑3‑030‑35888‑4_57
    https://doi.org/10.1007/978-3-030-35888-4_57 [Google Scholar]
  6. Andriella, A., Torras, C., Albedenour, C., and Alenyà, G.
    (2022) Introducing CARESSER: a Framework for in Situ Learning Robot Social Assistance from Expert Knowledge and Demonstrations. User Model User-Adap Inter. 10.1007/s11257‑021‑09316‑5
    https://doi.org/10.1007/s11257-021-09316-5 [Google Scholar]
  7. Andriella, A., Torras, C., and Alenyà, G.
    (2019b) Short-Term Human-Robot Interaction Adaptability in Real-World Environments. International Journal of Social Robotics.
    [Google Scholar]
  8. (2020b) Cognitive System Framework for Brain-Training Exercise Based on Human-Robot Interaction. Cognitive Computation, 12(4):793–810. 10.1007/s12559‑019‑09696‑2
    https://doi.org/10.1007/s12559-019-09696-2 [Google Scholar]
  9. Anzalone, S. M., Varni, G., Ivaldi, S., and Chetouani, M.
    (2017) Automated Prediction of Extraversion During Human-Humanoid Interaction. International Journal of Social Robotics, 9(3):385–399. 10.1007/s12369‑017‑0399‑6
    https://doi.org/10.1007/s12369-017-0399-6 [Google Scholar]
  10. Bandura, A.
    (1986) The Explanatory and Predictive Scope of Self-Efficacy Theory. Journal of Social and Clinical Psychology, 4(3):359–373. 10.1521/jscp.1986.4.3.359
    https://doi.org/10.1521/jscp.1986.4.3.359 [Google Scholar]
  11. Bentler, P. M.
    (1989) EQS 6 Structural Equations Program Manual. Technical report.
    [Google Scholar]
  12. Bochmann, G. V. and Sunshine, C. A.
    (1980) Formal Methods in Communication Protocol Design. IEEE Transactions on Communications, 28(4):624–631. 10.1109/TCOM.1980.1094685
    https://doi.org/10.1109/TCOM.1980.1094685 [Google Scholar]
  13. Brennan, S. E. and Hanna, J. E.
    (2009) Partner-Specific Adaptation in Dialog. Topics in Cognitive Science, 1(2):274–291. 10.1111/j.1756‑8765.2009.01019.x
    https://doi.org/10.1111/j.1756-8765.2009.01019.x [Google Scholar]
  14. Chidambaram, V., Chiang, Y. H., and Mutlu, B.
    (2012) Designing persuasive robots: How robots might persuade people using vocal and nonverbal cues. InProceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction, pages293–300. 10.1145/2157689.2157798
    https://doi.org/10.1145/2157689.2157798 [Google Scholar]
  15. Clabaugh, C., Mahajan, K., Jain, S., Pakkar, R., Becerra, D., Shi, Z., Deng, E., Lee, R., Ragusa, G., and Matarić, M.
    (2019) Long-Term Personalization of an In-Home Socially Assistive Robot for Children With Autism Spectrum Disorders. Frontiers in Robotics and AI, 6:611–621. 10.3389/frobt.2019.00110
    https://doi.org/10.3389/frobt.2019.00110 [Google Scholar]
  16. Conti, D., Commodari, E., and Buono, S.
    (2017) Personality factors and acceptability of socially assistive robotics in teachers with and without specialized training for children with disability. Life Span and Disability, 20(2):251–272.
    [Google Scholar]
  17. Cutrona, C. E. and Suhr, J. A.
    (1992) Controllability of Stressful Events and Satisfaction With Spouse Support Behaviors. Communication Research, 19(2):154–174. 10.1177/009365092019002002
    https://doi.org/10.1177/009365092019002002 [Google Scholar]
  18. Davis, F. D.
    (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems, 13(3):319–339. 10.2307/249008
    https://doi.org/10.2307/249008 [Google Scholar]
  19. De Graaf, M. M. A. and Ben Allouch, S.
    (2014) Expectation setting and personality attribution in HRI. InProceedings of the 9th ACM/IEEE International Conference on Human-Robot Interaction, pages144–145. IEEE Computer Society. 10.1145/2559636.2559796
    https://doi.org/10.1145/2559636.2559796 [Google Scholar]
  20. De Ruyter, B., Saini, P., Markopoulos, P., and Van Breemen, A.
    (2005) Assessing the effects of building social intelligence in a robotic interface for the home. Interacting with Computers, 17(5):522–541. 10.1016/j.intcom.2005.03.003
    https://doi.org/10.1016/j.intcom.2005.03.003 [Google Scholar]
  21. Dryer, D. C.
    (1999) Getting personal with computers: how to design personalities for agents. Applied Artificial Intelligence, 13(3):273–295. 10.1080/088395199117423
    https://doi.org/10.1080/088395199117423 [Google Scholar]
  22. Esterwood, C., Essenmacher, K., Yang, H., Zeng, F., and Robert, L.
    (2021) A Meta-Analysis of Human Personality and Robot Acceptance in Human-Robot Interaction. SSRN Electronic Journal. 10.2139/ssrn.3768022
    https://doi.org/10.2139/ssrn.3768022 [Google Scholar]
  23. Forgas-Coll, S., Huertas-Garcia, R., Andriella, A., and Alenyà, G.
    (2021) How do Consumers’ Gender and Rational Thinking Affect the Acceptance of Entertainment Social Robots?International Journal of Social Robotics, pages1–22.
    [Google Scholar]
  24. Fornell, C. and Larcker, D. F.
    (1981) Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3):382–388. 10.1177/002224378101800313
    https://doi.org/10.1177/002224378101800313 [Google Scholar]
  25. Gerrig, R. J.
    (2014) Psychology and life. New International Edition, Essex.
    [Google Scholar]
  26. Gerrig, R. J., Zimbardo, P. G., Campbell, A. J., Cumming, S. R., and Wilkes, F. J.
    (2011) Psychology and life. Pearson Higher Education AU., 2nd edition.
    [Google Scholar]
  27. Ghazali, A. S., Ham, J., Barakova, E., and Markopoulos, P.
    (2020) Persuasive Robots Acceptance Model (PRAM): Roles of Social Responses Within the Acceptance Model of Persuasive Robots. International Journal of Social Robotics, 12(5):1075–1092. 10.1007/s12369‑019‑00611‑1
    https://doi.org/10.1007/s12369-019-00611-1 [Google Scholar]
  28. Hair, J. F., Black, B., Babin Barry, J., and Anderson, R. E.
    (2010) Multivariate Data Analysis. Pearson Education.
    [Google Scholar]
  29. Hall, C. S. and Lindzey, G.
    (1957) Theories of personality. John Wiley & Sons Inc.
    [Google Scholar]
  30. Hampton, G. J.
    (2015) Imagining Slaves and Robots in Literature, Film, and Popular Culture. Lexington Books.
    [Google Scholar]
  31. Hayes, A. F.
    (2014) Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, volume51. The Guilford Press.
    [Google Scholar]
  32. Heerink, M., Kröse, B., Evers, V., and Wielinga, B.
    (2010) Assessing acceptance of assistive social agent technology by older adults: The almere model. Int J Soc Robot, 2(4):361–375. 10.1007/s12369‑010‑0068‑5
    https://doi.org/10.1007/s12369-010-0068-5 [Google Scholar]
  33. Icek Ajzen, M. F.
    (1980) Understanding attitudes and predicting social behavior.
    [Google Scholar]
  34. Joosse, M., Lohse, M., Perez, J. G., and Evers, V.
    (2013) What you do is who you are: The role of task context in perceived social robot personality. InProceedings of the IEEE International Conference on Robotics and Automation, pages2134–2139. 10.1109/ICRA.2013.6630863
    https://doi.org/10.1109/ICRA.2013.6630863 [Google Scholar]
  35. Lee, K. M., Peng, W., Jin, S. A., and Yan, C.
    (2006) Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in human-robot interaction. Journal of Communication, 56(4):754–772. 10.1111/j.1460‑2466.2006.00318.x
    https://doi.org/10.1111/j.1460-2466.2006.00318.x [Google Scholar]
  36. Lee, N., Kim, J., Kim, E., and Kwon, O.
    (2017) The Influence of Politeness Behavior on User Compliance with Social Robots in a Healthcare Service Setting. International Journal of Social Robotics, 9(5):727–743. 10.1007/s12369‑017‑0420‑0
    https://doi.org/10.1007/s12369-017-0420-0 [Google Scholar]
  37. Lee, W. H., Lin, C. W., and Shih, K. H.
    (2018) A technology acceptance model for the perception of restaurant service robots for trust, interactivity, and output quality. International Journal of Mobile Communications, 16(4):361–376. 10.1504/IJMC.2018.092666
    https://doi.org/10.1504/IJMC.2018.092666 [Google Scholar]
  38. Leite, I., Castellano, G., Pereira, A., Martinho, C., and Paiva, A.
    (2014) Empathic Robots for Long-term Interaction: Evaluating Social Presence, Engagement and Perceived Support in Children. International Journal of Social Robotics, 6(3):329–341. 10.1007/s12369‑014‑0227‑1
    https://doi.org/10.1007/s12369-014-0227-1 [Google Scholar]
  39. Lin, H., Chi, O. H., and Gursoy, D.
    (2020) Antecedents of customers’ acceptance of artificially intelligent robotic device use in hospitality services. Journal of Hospitality Marketing and Management, 29(5):530–549. 10.1080/19368623.2020.1685053
    https://doi.org/10.1080/19368623.2020.1685053 [Google Scholar]
  40. Maggi, G., Dell’Aquila, E., Cucciniello, I., and Rossi, S.
    (2020) “Don’t Get Distracted!”: The Role of Social Robots’ Interaction Style on Users’ Cognitive Performance, Acceptance, and Non-Compliant Behavior. International Journal of Social Robotics, pages1–13.
    [Google Scholar]
  41. McCrae, R. R. and John, O. P.
    (1992) An Introduction to the Five-Factor Model and Its Applications. Journal of Personality, 60(2):175–215. 10.1111/j.1467‑6494.1992.tb00970.x
    https://doi.org/10.1111/j.1467-6494.1992.tb00970.x [Google Scholar]
  42. Meerbeek, B., Hoonhout, J., Bingley, P., and Terken, J. M.
    (2008) The influence of robot personality on perceived and preferred level of user control. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 9(2):204–229. 10.1075/is.9.2.04mee
    https://doi.org/10.1075/is.9.2.04mee [Google Scholar]
  43. Mende, M., Scott, M. L., van Doorn, J., Grewal, D., and Shanks, I.
    (2019) Service Robots Rising: How Humanoid Robots Influence Service Experiences and Elicit Compensatory Consumer Responses. Journal of Marketing Research, 56(4):535–556. 10.1177/0022243718822827
    https://doi.org/10.1177/0022243718822827 [Google Scholar]
  44. Mota, P., Paetzel, M., Fox, A., Amini, A., Srinivasan, S., and Kennedy, J.
    (2018) Expressing Coherent Personality with Incremental Acquisition of Multimodal Behaviors. InProceedings of the 27th IEEE International Symposium on Robot and Human Interactive Communication, pages396–403. Institute of Electrical and Electronics Engineers Inc. 10.1109/ROMAN.2018.8525763
    https://doi.org/10.1109/ROMAN.2018.8525763 [Google Scholar]
  45. Netemeyer, R., Bearden, W., and Sharma, S.
    (2003) Scaling Procedures. SAGE Publications, Inc. 10.4135/9781412985772
    https://doi.org/10.4135/9781412985772 [Google Scholar]
  46. Paetzel-Prüsmann, M., Perugia, G., and Castellano, G.
    (2021) The Influence of robot personality on the development of uncanny feelings. Computers in Human Behavior, 120:106756. 10.1016/j.chb.2021.106756
    https://doi.org/10.1016/j.chb.2021.106756 [Google Scholar]
  47. Palau-Saumell, R., Forgas-Coll, S., Sánchez-García, J., and Robres, E.
    (2019) User Acceptance of Mobile Apps for Restaurants: An Expanded and Extended UTAUT-2. Sustainability, 11(4):1210. 10.3390/su11041210
    https://doi.org/10.3390/su11041210 [Google Scholar]
  48. Petty, R. E. and Cacioppo, J. T.
    (1986) Communication and Persuasion. Springer New York. 10.1007/978‑1‑4612‑4964‑1
    https://doi.org/10.1007/978-1-4612-4964-1 [Google Scholar]
  49. Robert, L., Alahmad, R., Esterwood, C., Kim, S., You, S., and Zhang, Q.
    (2020) A Review of Personality in Human-Robot Interactions. SSRN Electronic Journal. 10.2139/ssrn.3528496
    https://doi.org/10.2139/ssrn.3528496 [Google Scholar]
  50. Robert, L. P.
    (2018) Personality in the Human Robot Interaction Literature : A Review and Brief Critique. InProceedings of the 24th Americas Conference on Information Systems, (May).
    [Google Scholar]
  51. Rossi, S., Conti, D., Garramone, F., Santangelo, G., Staffa, M., Varrasi, S., and Di Nuovo, A.
    (2020) The role of personality factors and empathy in the acceptance and performance of a social robot for psychometric evaluations. Robotics, 9(2):39. 10.3390/robotics9020039
    https://doi.org/10.3390/robotics9020039 [Google Scholar]
  52. Savela, N., Turja, T., and Oksanen, A.
    (2018) Social Acceptance of Robots in Different Occupational Fields: A Systematic Literature Review. International Journal of Social Robotics, 10(4):493–502. 10.1007/s12369‑017‑0452‑5
    https://doi.org/10.1007/s12369-017-0452-5 [Google Scholar]
  53. Schneider, S. and Kummert, F.
    (2016) Motivational effects of acknowledging feedback from a socially assistive robot. InProceedings of the 8th International Conference on Social Robotics, volume9979LNAI, pages870–879. 10.1007/978‑3‑319‑47437‑3_85
    https://doi.org/10.1007/978-3-319-47437-3_85 [Google Scholar]
  54. Soldz, S. and Vaillant, G. E.
    (1999) The Big Five Personality Traits and the Life Course: A 45-Year Longitudinal Study. Journal of Research in Personality, 33:208–232. 10.1006/jrpe.1999.2243
    https://doi.org/10.1006/jrpe.1999.2243 [Google Scholar]
  55. Staffa, M., Rossi, A., Bucci, B., Russo, D., and Rossi, S.
    (2021) Shall I Be Like You? Investigating Robot’s Personalities and Occupational Roles for Personalised HRI. InLi, H., Ge, S. S., Wu, Y., Wykowska, A., He, H., Liu, X., Li, D., and Perez-Osorio, J., editors, Proceedings of the 13th International Conference on Social Robotics, pages718–728. Springer International Publishing. 10.1007/978‑3‑030‑90525‑5_63
    https://doi.org/10.1007/978-3-030-90525-5_63 [Google Scholar]
  56. Sverre Syrdal, D., Dautenhahn, K., Woods, S. N., Walters, M. L., and Lee Koay, K.
    (2006) Looking Good? Appearance Preferences and Robot Personality Inferences at Zero Acquaintance. Technical report.
    [Google Scholar]
  57. Swift-Spong, K., Short, E., Wade, E., and Mataric, M. J.
    (2015) Effects of comparative feedback from a Socially Assistive Robot on self-efficacy in post-stroke rehabilitation. InIProceedings of the EEE International Conference on Rehabilitation Robotics, volume 2015- Septe, pages764–769. 10.1109/ICORR.2015.7281294
    https://doi.org/10.1109/ICORR.2015.7281294 [Google Scholar]
  58. Tapus, A., Tapus, C., Mataric, M., and Matari, M. J.
    (2008) User-Robot Personality Matching and Robot Behavior Adaptation for Post-Stroke Rehabilitation Therapy. Therapy. Intelligent Service Robotics, 1(2):169–183. 10.1007/s11370‑008‑0017‑4
    https://doi.org/10.1007/s11370-008-0017-4 [Google Scholar]
  59. Tay, B., Jung, Y., and Park, T.
    (2014) When stereotypes meet robots: The double-edge sword of robot gender and personality in human-robot interaction. Computers in Human Behavior, 38:75–84. 10.1016/j.chb.2014.05.014
    https://doi.org/10.1016/j.chb.2014.05.014 [Google Scholar]
  60. Turja, T., Aaltonen, I., Taipale, S., and Oksanen, A.
    (2019) Robot acceptance model for care (RAM-care): A principled approach to the intention to use care robots. Information & Management, 57(5):103–220.
    [Google Scholar]
  61. Venkatesh, V. and Davis, F. D.
    (2000) Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2):186–204. 10.1287/mnsc.46.2.186.11926
    https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  62. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D.
    (2003) User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3):425–478. 10.2307/30036540
    https://doi.org/10.2307/30036540 [Google Scholar]
  63. Venkatesh, V., Thong, J. Y., and Xu, X.
    (2016) Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5):328–376. 10.17705/1jais.00428
    https://doi.org/10.17705/1jais.00428 [Google Scholar]
  64. Whittlesea, B. W.
    (1993) Illusions of Familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(6):1235–1253.
    [Google Scholar]
  65. Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., and Martins, A.
    (2018) Brave new world: service robots in the frontline. Journal of Service Management, 29(5):907–931. 10.1108/JOSM‑04‑2018‑0119
    https://doi.org/10.1108/JOSM-04-2018-0119 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.21019.and
Loading
/content/journals/10.1075/is.21019.and
Loading

Data & Media loading...

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error