1887
Volume 23, Issue 3
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The development of artificial agents for social interaction pushes to enrich robots with social skills and knowledge about (local) social norms. One possibility is to distinguish the expressive and the functional orders during a human-robot interaction. The overarching aim of this work is to set a framework to make the artificial agent socially-competent beyond dyadic interaction – interaction in varying multi-party social situations – and beyond individual-based user personalization, thereby enlarging the current conception of “culturally-adaptive”. The core idea is to provide the artificial agent with the capability to handle different kinds of interactional disruptions, and associated recovery strategies, in microsociology. The result is obtained by classifying functional and social disruptions, and by investigating the requirements a robot’s architecture should satisfy to exploit such knowledge. The paper also highlights how this level of competence is achieved by focusing on just three dimensions: (i) social capability, (ii) relational role, and (iii) proximity, leaving aside the further complexity of full-fledged human-human interactions. Without going into technical aspects, End-to-end Data-driven Architectures and Modular Architectures are discussed to evaluate the degree to which they can exploit this new set of social and cultural knowledge. Finally, a list of general requirements for such agents is proposed.

Loading

Article metrics loading...

/content/journals/10.1075/is.22021.bas
2023-04-21
2024-12-07
Loading full text...

Full text loading...

References

  1. Andriella, A., Torras, C., & Alenyà, G.
    (2020) Short-Term Human–Robot Interaction Adaptability in Real-World Environments. International Journal of Social Robotics, 121, 639–657. 10.1007/s12369‑019‑00606‑y
    https://doi.org/10.1007/s12369-019-00606-y [Google Scholar]
  2. Baraka, K., Alves-Oliveira, P., & Ribeiro, T.
    (2020) An extended framework for characterizing social robots. InC. Jost, B. Le Pévédic, T. Belpaeme, C. Bethel, D. Chrysostomou, N. Crook, (Eds.), Human-Robot Interaction (p.21–64). Springer Series on Bio- and Neurosystems, vol 12. Springer. 10.1007/978‑3‑030‑42307‑0_2
    https://doi.org/10.1007/978-3-030-42307-0_2 [Google Scholar]
  3. Bassetti, C., & Liberman, K.
    (2021) Making talk together: Simultaneity and rhythm in mundane Italian conversation. Language and Communication, 801, 95–113. 10.1016/j.langcom.2021.06.002
    https://doi.org/10.1016/j.langcom.2021.06.002 [Google Scholar]
  4. Benner, D., Elshan, E., Schöbel, S., & Janson, A.
    (2021) What do you mean? A review on recovery strategies to overcome conversational breakdowns of conversational agents. Paper presented at theInternational Conference on Information Systems (ICIS), Austin. Available athttps://pubs.wi-kassel.de/wp-content/uploads/2022/03/JML_864.pdf
    [Google Scholar]
  5. Borgo, S., & Blanzieri, E.
    (2019) Trait-based module for culturally-competent robots. International Journal of Humanoid Robotics, 16(6), 1950028. 10.1142/S0219843619500282
    https://doi.org/10.1142/S0219843619500282 [Google Scholar]
  6. Brown, P., & Levinson, S.
    (1978) Universals in language usage: Politeness phenomena. In: E. N. Goody (Ed.), Questions and Politeness: Strategies in Social Interaction (pp. 56–311). Cambridge University Press.
    [Google Scholar]
  7. Bruno, B., Recchiuto, C. T., Papadopoulos, I., Saffiotti, A., Koulouglioti, C., Menicatti, R., Mastrogiovanni, F., Zaccaria, R., & Sgorbissa, A.
    (2019) Knowledge representation for culturally competent personal robots: requirements, design principles, implementation, and assessment. International Journal of Social Robotics, 11(3), 515–538. 10.1007/s12369‑019‑00519‑w
    https://doi.org/10.1007/s12369-019-00519-w [Google Scholar]
  8. Buolamwini, J., & Gebru, T.
    (2018) Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, in Proceedings of Machine Learning Research, 811, 77–91. Available fromhttps://proceedings.mlr.press/v81/buolamwini18a.html
    [Google Scholar]
  9. Cain, A.
    (1983) A Study of Pets in the Family System. InA. Katcher, & A. Beck (Eds.), New perspectives on our lives with companion animals (pp. 71–81). University of Pennsylvania Press.
    [Google Scholar]
  10. Carlucci, F. M., Nardi, L., Iocchi, L., & Nardi, D.
    (2015) Explicit representation of social norms for social robots. InIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4191–4196). IEEE. 10.1109/IROS.2015.7353970
    https://doi.org/10.1109/IROS.2015.7353970 [Google Scholar]
  11. Collins, R.
    (2004) Interaction ritual chains. Princeton University Press. 10.1515/9781400851744
    https://doi.org/10.1515/9781400851744 [Google Scholar]
  12. Cortellessa, G., Scopelliti, M., Tiberio, L., Svedberg, G. K., Loutfi, A., & Pecora, F.
    (2008) A cross-cultural evaluation of domestic assistive robots. InAAAI fall symposium: : Technical Report, v FS-08-02 (pp. 24–31). Retrieved from: urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-7138
    [Google Scholar]
  13. Crenshaw, K.
    (1991) Mapping the Margins: Intersectionality, Identity Politics, and Violence against Women of Color. Stanford Law Review, 43(6), 1241–1299. 10.2307/1229039
    https://doi.org/10.2307/1229039 [Google Scholar]
  14. Deriu, J., Rodrigo, A., Otegi, A., Echegoyen, G., Rosset, S., Agirre, E., & Cieliebak, M.
    (2021) Survey on evaluation methods for dialogue systems. Artificial Intelligence Review, 54(1), 755–810. 10.1007/s10462‑020‑09866‑x
    https://doi.org/10.1007/s10462-020-09866-x [Google Scholar]
  15. Drew, P., Heritage, J., Lerner, G., & Pomerantz, A.
    (Eds.) (2015) Talking about troubles in conversation. Oxford University Press. 10.1111/josl.12168
    https://doi.org/10.1111/josl.12168 [Google Scholar]
  16. Eresha, G., Haring, M., Endrass, B., Andre, E., & Obaid, M.
    (2013) Investigating the influence of culture on proxemic behaviors for humanoid robots. IEEE Ro-Man, 430–435. 10.1109/ROMAN.2013.6628517
    https://doi.org/10.1109/ROMAN.2013.6628517 [Google Scholar]
  17. Evers, V., Maldonado, H., Brodecki, T. L., & Hinds, P. J.
    (2008) Relational vs. group self-construal: Untangling the role of national culture in HRI. InProceedings of the third ACM/IEEE International Conference on Human-Robot Interaction (pp. 255–262). Association for Computing Machinery. 10.1145/1349822.1349856
    https://doi.org/10.1145/1349822.1349856 [Google Scholar]
  18. Fitzgerald, R., & Housley, W.
    (Eds.) (2015) Advances in Membership categorization Analysis. Sage. 10.4135/9781473917873
    https://doi.org/10.4135/9781473917873 [Google Scholar]
  19. Foster, M. E., Gaschler, A., Giuliani, M., Isard, A., Pateraki, M., & Petrick, R. P.
    (2012) Two people walk into a bar: Dynamic multi-party social interaction with a robot agent. InProceedings of the 14th ACM international conference on Multimodal interaction (pp. 3–10). 10.1145/2388676.2388680
    https://doi.org/10.1145/2388676.2388680 [Google Scholar]
  20. Gallo, D., Shreepriya, S., Colombino, T., Grasso, M. A., & Boulard, C.
    (2021) Considerations about Social Norms Compliance in a Shared Elevator Scenario. InRO-MAN 2021 Workshop on Robot Behavior Adaptation to Human Social Norms (TSAR).
    [Google Scholar]
  21. Garfinkel, H.
    (1963) A conception of and experiments with ‘trust’ as a condition of concerted actions. InO. J. Harvey (Ed.), Motivation and Social Interaction: Cognitive Approaches (pp. 187–238). Ronald Press.
    [Google Scholar]
  22. (1967) Studies in Ethnomethodology. Prentice–Hall.
    [Google Scholar]
  23. (2002) Ethnomethodology’s program: working out Durkheim’s aphorism. Rowman & Littlefield Publishers.
    [Google Scholar]
  24. Giuliani, M., Petrick, R. P. A., Foster, M. E., Gaschler, A., Isard, A., Pateraki, M., & Sigalas, M.
    (2013) Comparing task-based and socially intelligent behaviour in a robot bartender. InProceedings of the 15th international conference on Multimodal interaction (pp. 263–270). 10.1145/2522848.2522869
    https://doi.org/10.1145/2522848.2522869 [Google Scholar]
  25. Goffman, E.
    (1959) The presentation of self in everyday life. Anchor Books.
    [Google Scholar]
  26. (1961) Encounters: two studies in the sociology of interaction. Bobbs–Merrill.
    [Google Scholar]
  27. (1967) Interaction ritual: essays on face-to-face behavior. Aldine Publishing.
    [Google Scholar]
  28. (1974) Frame analysis: an essay on the organization of experience. Harper & Row.
    [Google Scholar]
  29. (1981) Forms of talk. University of Pennsylvania Press.
    [Google Scholar]
  30. (1983) The interaction order. American Sociological Review, 48(1), 1–17. 10.2307/2095141
    https://doi.org/10.2307/2095141 [Google Scholar]
  31. Goodwin, C., & Heritage, J.
    (1990) Conversation Analysis. Annual Review of Anthropology, 19(1), 283–307. 10.1146/annurev.an.19.100190.001435
    https://doi.org/10.1146/annurev.an.19.100190.001435 [Google Scholar]
  32. Guye-Vuilleme, A., & Thalmann, D. A.
    (2000) High-level architecture for believable social agents. Virtual Reality5(2), 95–106. 10.1007/BF01424340
    https://doi.org/10.1007/BF01424340 [Google Scholar]
  33. hooks, B.
    (2014) Feminist Theory: from margin to center (3rd ed.). Routledge. 10.4324/9781315743172
    https://doi.org/10.4324/9781315743172 [Google Scholar]
  34. Horodeck, R.
    (1981) Excuses and Apologies: Discovering How They Work with the Game Excuses and Challenges. The Journal of the Association of Teachers of Japanese, 16(2), 119–139. 10.2307/489323
    https://doi.org/10.2307/489323 [Google Scholar]
  35. Joosse, M., Poppe, R., Lohse, M., & Evers, V.
    (2014) Cultural differences in how an engagement-seeking robot should approach a group of people. InProceedings of the 5th ACM international conference on Collaboration across boundaries: culture, distance & technology (pp. 121–130). 10.1145/2631488.2631499
    https://doi.org/10.1145/2631488.2631499 [Google Scholar]
  36. Katz, Y.
    (2020) Artificial Whiteness: Politics and Ideology in Artificial Intelligence. Columbia University Press. 10.7312/katz19490
    https://doi.org/10.7312/katz19490 [Google Scholar]
  37. Kendon, A.
    Goffman’s approach to face-to-face interaction. In: Drew, P., Wootton, A. editors Erving Goffman: exploring the interaction order. Cambridge: Polity Press; 1988 p. 14–40.
    [Google Scholar]
  38. Khaliq, A. A., Köckemann, U., Pecora, F., Saffiotti, A., Bruno, B., Recchiuto, C. T., Sgorbissa, A., Bui, H.-D., & Chong, N.-Y.
    (2018) Culturally aware Planning and Execution of Robot Actions. InIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 326–332). 10.1109/IROS.2018.8593570
    https://doi.org/10.1109/IROS.2018.8593570 [Google Scholar]
  39. Liberman, K.
    (2013) More Studies in Ethnomethodology. State University of New York Press.
    [Google Scholar]
  40. Lim, V., Rooksby, M., & Cross, E. S.
    (2021) Social Robots on a Global Stage: Establishing a Role for Culture During Human–Robot Interaction. International Journal of Social Robotics, 131, 1307–1333. 10.1007/s12369‑020‑00710‑4
    https://doi.org/10.1007/s12369-020-00710-4 [Google Scholar]
  41. Marge, M., & Rudnicky, A. I.
    (2019) Miscommunication Detection and Recovery in Situated Human–Robot Dialogue. ACM Transactions on Interactive Intelligent Systems, 9(1), Article 3 (pp. 1–40). 10.1145/3237189
    https://doi.org/10.1145/3237189 [Google Scholar]
  42. Mascarenhas, S., Dias, J., Alfonso, N., Enz, S., & Paiva, A.
    (2009) Using rituals to express cultural differences in synthetic characters. InProceedings of The 8th International Joint Conference on Autonomous Agents and Multiagent Systems – Volume 1 (pp. 305–312).
    [Google Scholar]
  43. Mascarenhas, S., Prada, R., Paiva, A., & Hofstede, G. J.
    (2013a) Social Importance Dynamics: A Model for Culturally-Adaptive Agents. InR. Aylett, B. Krenn, C. Pelachaud, & H. Shimodaira (Eds.), Intelligent Virtual Agents (IVA 2013), LNCS 8108. Springer. 10.1007/978‑3‑642‑40415‑3_29
    https://doi.org/10.1007/978-3-642-40415-3_29 [Google Scholar]
  44. Mascarenhas, S., Silva, A., Paiva, A., Aylett, R., Kistler, F., André, E., Degens, N., Hofstede, G. J., & Kappas, A.
    (2013b) Traveller: an intercultural training system with intelligent agents. InProceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems (pp. 1387–1388).
    [Google Scholar]
  45. Miller, C. A., Wu, P., Vakili, V., Ott, T., & Smith, K.
    (2009) Culture, Politeness and Directive Compliance. InC. Stephanidis (Ed.), Universal Access in HCI, Part 1, HCII 2009 (pp. 568–577). Springer. 10.1007/978‑3‑642‑02707‑9_64
    https://doi.org/10.1007/978-3-642-02707-9_64 [Google Scholar]
  46. Moore, R., & Arar, R.
    (2019) Conversational UX Design: A Practitioner’s Guide to the Natural Conversation Framework. Association for Computing Machinery. 10.1145/3304087
    https://doi.org/10.1145/3304087 [Google Scholar]
  47. Nomura, T., Suzuki, T., Kanda, T., Han, J., Shin, N., Burke, J. L., & Kato, K.
    (2008) What People Assume about Humanoid and Animal-Type Robots: Cross-Cultural Analysis between Japan, Korea, and the United States. International Journal of Humanoid Robotics, 5(1), 25–46. 10.1142/S0219843608001297
    https://doi.org/10.1142/S0219843608001297 [Google Scholar]
  48. Oh, C. S., Bailenson, J. N., & Welch, G. F.
    (2018) A Systematic Review of Social Presence: Definition, Antecedents, and Implications. Frontiers in Robotics and AI, 51, 114. 10.3389/frobt.2018.00114
    https://doi.org/10.3389/frobt.2018.00114 [Google Scholar]
  49. Onyeulo, E. B., & Gandhi, V.
    (2020) What makes a social robot good at interacting with humans?. Information, 111, 43. 10.3390/info11010043
    https://doi.org/10.3390/info11010043 [Google Scholar]
  50. Honig, S., & Oron-Gilad, T.
    (2018) Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development. Frontiers in Psychology, 91, 861. 10.3389/fpsyg.2018.00861
    https://doi.org/10.3389/fpsyg.2018.00861 [Google Scholar]
  51. Petrick, R., & Foster, M. E.
    (2013) Planning for Social Interaction in a Robot Bartender Domain. Proceedings of the International Conference on Automated Planning and Scheduling, 23(1), 389–397. Retrieved fromhttps://ojs.aaai.org/index.php/ICAPS/article/view/13589. 10.1609/icaps.v23i1.13589
    https://doi.org/10.1609/icaps.v23i1.13589 [Google Scholar]
  52. Pitsch, K.
    (2016) Limits and opportunities for mathematizing communicational conduct for social robotics in the real world? Toward enabling a robot to make use of the human’s competences. AI & Society, 311, 587–593. 10.1007/s00146‑015‑0629‑0
    https://doi.org/10.1007/s00146-015-0629-0 [Google Scholar]
  53. Pomerantz, A.
    (1984) Agreeing and disagreeing with assessments: some features of preferred/dispreferred turn shapes. InJ. M. Atkinson, & J. C. Heritage (Eds.), Structures of Social Action: Studies in Conversation Analysis (pp. 57–101). Cambridge University Press.
    [Google Scholar]
  54. Pustejovsky, J., & Krishnaswamy, N.
    (2021) Embodied human computer interaction. KI-Künstliche Intelligenz, 35(3), 307–327. 10.1007/s13218‑021‑00727‑5
    https://doi.org/10.1007/s13218-021-00727-5 [Google Scholar]
  55. Raymond, G., Hayashi, M., & Sidnell, J.
    (Eds.) (2013) Conversational Repair and Human Understanding. Cambridge University Press. 10.1017/CBO9780511757464.001
    https://doi.org/10.1017/CBO9780511757464.001 [Google Scholar]
  56. Rehm, M.
    (2010) Developing Enculturated Agents: Pitfalls and Strategies. InE. Blanchard, & D. Allard (Eds.), Handbook of Research on Culturally-Aware Information Technology: Perspectives and Models (pp. 362–386). Idea Group Publishing. 10.4018/978‑1‑61520‑883‑8.ch016
    https://doi.org/10.4018/978-1-61520-883-8.ch016 [Google Scholar]
  57. Sacks, H.
    (1992) Lectures on conversation. Blackwell.
    [Google Scholar]
  58. Schegloff, E. A., Jefferson, G., & Sacks, H.
    (1977) The Preference for Self-Correction in the Organization of Repair in Conversation. Language, 53(2), 361–382. 10.1353/lan.1977.0041
    https://doi.org/10.1353/lan.1977.0041 [Google Scholar]
  59. Tavory, I., & Fine, G. A.
    (2020) Disruption and the theory of the interaction order. Theory and Society, 491, 365–385. 10.1007/s11186‑020‑09384‑3
    https://doi.org/10.1007/s11186-020-09384-3 [Google Scholar]
  60. Thomas, W. I.
    (1923) The Unadjusted Girl: With Cases and Standpoint for Behavior Analysis. Little, Brown.
    [Google Scholar]
  61. Torta, E., Werner, F., Johnson, D. O., Juola, J. F., Cuijpers, R. H., Bazzani, M., & Bregman, J.
    (2014) Evaluation of a small socially-assistive humanoid robot in intelligent homes for the care of the elderly. Journal of Intelligent & Robotic Systems76(1), 57–71. 10.1007/s10846‑013‑0019‑0
    https://doi.org/10.1007/s10846-013-0019-0 [Google Scholar]
  62. Turowetz, J., & Rawls, A. W.
    (2021) The development of Garfinkel’s ‘Trust’ argument from 1947 to 1967: Demonstrating how inequality disrupts sense and self-making. Journal of Classical Sociology, 21(1), 3–37. 10.1177/1468795X19894423
    https://doi.org/10.1177/1468795X19894423 [Google Scholar]
  63. Wang, Y., & Kosinski, M.
    (2018) Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 114(2), 246–257. 10.1037/pspa0000098
    https://doi.org/10.1037/pspa0000098 [Google Scholar]
  64. Watson, D. R.
    (1978) Categorization, Authorization and Blame-Negotiation in Conversation. Sociology, 121, 105–113. 10.1177/003803857801200106
    https://doi.org/10.1177/003803857801200106 [Google Scholar]
/content/journals/10.1075/is.22021.bas
Loading
/content/journals/10.1075/is.22021.bas
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): culture; disruption; expressive order; recovery; social interaction
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error