Volume 24, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381



Cetaceans show high cognitive abilities and strong social bonds. Their primary sensory modality to communicate and sense the environment is acoustics. Research on their echolocation and social vocalizations typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system to better match their natural capabilities. We argue that a full duplex system, in which signals can flow in both directions simultaneously is essential for communication research. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB. We discuss the limiting factors and how to improve the echo suppression further. The system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales.

Available under the CC BY 4.0 license.

Article metrics loading...

Loading full text...

Full text loading...



  1. Amundin, M., Starkhammar, J., Evander, M., Almqvist, M., Lindström, K., & Persson, H. W.
    (2008) “An echolocation visualization and interface system for dolphin research,” J Acoust Soc Am, vol.123, no.2, pp. 1188–1194. 10.1121/1.2828213
    https://doi.org/10.1121/1.2828213 [Google Scholar]
  2. Antsaklis, P. J.
    (2021) “Linear Systems: Discrete-Time Impulse Response Descriptions,” inEncyclopedia of Systems and Control, Cham: Springer International Publishing, pp. 1144–1147. 10.1007/978‑3‑030‑44184‑5_189
    https://doi.org/10.1007/978-3-030-44184-5_189 [Google Scholar]
  3. Aubauer, R., & Au, W. W. L.
    (1998) “Phantom echo generation: A new technique for investigating dolphin echolocation,” J Acoust Soc Am, vol.104, no.3, pp. 1165–1170. 10.1121/1.424324
    https://doi.org/10.1121/1.424324 [Google Scholar]
  4. Branstetter, B. K.,
    (2020) “Spectral cues and temporal integration during cylinder echo discrimination by bottlenose dolphins (Tursiops truncatus),” J Acoust Soc Am, vol.148, no.2, pp. 614–626. 10.1121/10.0001626
    https://doi.org/10.1121/10.0001626 [Google Scholar]
  5. Curé, C.,
    (2019) “Evidence for discrimination between feeding sounds of familiar fish and unfamiliar mammal-eating killer whale ecotypes by long-finned pilot whales,” Anim Cogn, vol.22, no.5, pp. 863–882. 10.1007/s10071‑019‑01282‑1
    https://doi.org/10.1007/s10071-019-01282-1 [Google Scholar]
  6. Deecke, V. B.
    (2007) “Studying Marine Mammal Cognition in the Wild: A Review of Four Decades of Playback Experiments,” Aquat Mamm, vol.32, no.4, pp. 461–482. 10.1578/AM.32.4.2006.461
    https://doi.org/10.1578/AM.32.4.2006.461 [Google Scholar]
  7. Delikaris-Manias, S., McCormack, L., Huhtakallio, I., & Pulkki, V.
    (2018) “Real-time underwater spatial audio: a feasibility study,” 144th Audio Engineering Society Convention 2018, no.May.
    [Google Scholar]
  8. Filatova, O. A., Fedutin, I. D., Burdin, A. M., & Hoyt, E.
    (2011) “Responses of Kamchatkan fish-eating killer whales to playbacks of conspecific calls,” Mar Mamm Sci, vol.27, no.2, pp. 26–42. 10.1111/j.1748‑7692.2010.00433.x
    https://doi.org/10.1111/j.1748-7692.2010.00433.x [Google Scholar]
  9. Finneran, J. J.,
    (2020) “Dolphin echo-delay resolution measured with a jittered-echo paradigm,” J Acoust Soc Am, vol.148, no.1, pp. 374–388. 10.1121/10.0001604
    https://doi.org/10.1121/10.0001604 [Google Scholar]
  10. Handel, S., Todd, S. K., & Zoidis, A. M.
    (2012) “Hierarchical and rhythmic organization in the songs of humpback whales (Megaptera novaeangliae),” Bioacoustics, vol.21, no.2, pp. 141–156. 10.1080/09524622.2012.668324
    https://doi.org/10.1080/09524622.2012.668324 [Google Scholar]
  11. Haykin, S., & Chen, Z.
    (2005) “The cocktail party problem,” Neural Computation, vol.17, no.9. MIT Press, pp. 1875–1902, Sep.01. 10.1162/0899766054322964
    https://doi.org/10.1162/0899766054322964 [Google Scholar]
  12. Herman, L. M., Richards, D. G., & Wolz, J. P.
    (1984) “Comprehension of sentences by bottlenosed dolphins,” Cognition, vol.16, no.2, pp. 129–219. 10.1016/0010‑0277(84)90003‑9
    https://doi.org/10.1016/0010-0277(84)90003-9 [Google Scholar]
  13. Herzing, D.
    (2016) “Interfaces and Keyboards For Human–Dolphin Communication: What Have We Learned?,” Anim Behav Cogn, vol.3, no.4, pp. 243–254. 10.12966/abc.04.11.2016
    https://doi.org/10.12966/abc.04.11.2016 [Google Scholar]
  14. Herzing, D. L., & Johnson, C. M.
    (2015) Dolphin communication and cognition : past, present, and future / edited by Denise L. Herzing and Christine M. Johnson. The MIT Press. 10.7551/mitpress/9939.001.0001
    https://doi.org/10.7551/mitpress/9939.001.0001 [Google Scholar]
  15. Holt, M. M., Noren, D. P., & Emmons, C. K.
    (2011) “Effects of noise levels and call types on the source levels of killer whale calls,” J Acoust Soc Am, vol.130, no.5, pp. 3100–3106. 10.1121/1.3641446
    https://doi.org/10.1121/1.3641446 [Google Scholar]
  16. Jourdain, E.,
    (2019) “North Atlantic killer whale Orcinus orca populations: a review of current knowledge and threats to conservation,” Mamm Rev, vol.49, no.4, pp. 384–400. 10.1111/mam.12168
    https://doi.org/10.1111/mam.12168 [Google Scholar]
  17. (2021) “Natural Entrapments of Killer Whales (Orcinus orca): A Review of Cases and Assessment of Intervention Techniques,” Frontiers in Conservation Science, vol.21, no.August, pp. 1–13. 10.3389/fcosc.2021.707616
    https://doi.org/10.3389/fcosc.2021.707616 [Google Scholar]
  18. King, S. L.
    (2015) “You talkin’ to me? Interactive playback is a powerful yet underused tool in animal communication research,” Biol Lett, vol.11, no.7, 10.1098/rsbl.2015.0403
    https://doi.org/10.1098/rsbl.2015.0403 [Google Scholar]
  19. King, S. L., Guarino, E., Donegan, K., McMullen, C., & Jaakkola, K.
    (2021) “Evidence that bottlenose dolphins can communicate with vocal signals to solve a cooperative task,” R Soc Open Sci, vol.8, no.3, 10.1098/rsos.202073
    https://doi.org/10.1098/rsos.202073 [Google Scholar]
  20. Kohlsdorf, D., Gilliland, S., Presti, P., Starner, T., & Herzing, D.
    (2013) “An underwater wearable computer for two way human–dolphin communication experimentation,” inISWC 2013 – Proceedings of the 2013 ACM International Symposium on Wearable Computers, pp. 147–148. 10.1145/2493988.2494346
    https://doi.org/10.1145/2493988.2494346 [Google Scholar]
  21. Lang, T. G., & Smith, H. A. P.
    (1965) “Communication between dolphins in separate tanks by way of an electronic acoustic link,” Science Science, vol.150, no.3705, pp. 1839–1844. 10.1126/science.150.3705.1839
    https://doi.org/10.1126/science.150.3705.1839 [Google Scholar]
  22. Lilly, J. C.
    (1978) “Communication between man and dolphin: The possibilities of talking with other species.,” Crown Publishers, Inc., New York. 269pp. 1978. Crown, New York, p.269.
    [Google Scholar]
  23. Ling, F.
    (2014) “Achievable performance and limiting factors of echo cancellation in wireless communications,” in2014 Information Theory and Applications Workshop, ITA 2014 – Conference Proceedings. 10.1109/ITA.2014.6804210
    https://doi.org/10.1109/ITA.2014.6804210 [Google Scholar]
  24. Magnúsdóttir, E. E., & Lim, R.
    (2019) “Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter,” PLoS One, vol.14, no.1, 10.1371/journal.pone.0210057
    https://doi.org/10.1371/journal.pone.0210057 [Google Scholar]
  25. Malinka, C.
    (2021) “Biosonar of narrow-band high-frequency toothed whales: Sampling a dynamic, multi-target world,” Aarhus University.
    [Google Scholar]
  26. Marino, L.
    (2002) “Convergence of complex cognitive abilities in cetaceans and primates,” inBrain, Behavior and Evolution, vol.59, no.1–2, pp. 21–32. 10.1159/000063731
    https://doi.org/10.1159/000063731 [Google Scholar]
  27. Marulanda, J. Lopez,
    (Apr. 2021) “Acoustic behaviour of bottlenose dolphins under human care while performing synchronous aerial jumps,” Behavioural Processes, vol.1851, p.104357, 10.1016/j.beproc.2021.104357
    https://doi.org/10.1016/j.beproc.2021.104357 [Google Scholar]
  28. Muller, M. W., Au, W. W. L., Nachtigall, P. E., Allen, J. S., & Breese, M.
    (2007) “Phantom echo highlight amplitude and temporal difference resolutions of an echolocating dolphin, Tursiops truncatus,” J Acoust Soc Am, vol.122, no.4, pp. 2255–2262. 10.1121/1.2769973
    https://doi.org/10.1121/1.2769973 [Google Scholar]
  29. Narula, G., Herbst, J. A., Rychen, J., & Hahnloser, R. H. R.
    (2018) “Learning auditory discriminations from observation is efficient but less robust than learning from experience,” Nat Commun, vol.9, no.1, p.3218, 10.1038/s41467‑018‑05422‑y
    https://doi.org/10.1038/s41467-018-05422-y [Google Scholar]
  30. Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C.
    2018 “Taking turns: Bridging the gap between human and animal communication,” Proceedings of the Royal Society B: Biological Sciences, vol.285, no.1880, 10.1098/rspb.2018.0598
    https://doi.org/10.1098/rspb.2018.0598 [Google Scholar]
  31. Richards, D. G., Wolz, J. P., & Herman, L. M.
    (1984) “Vocal mimicry of computer-generated sounds and vocal labeling of objects by a bottlenosed dolphin, Tursiops truncatus.,” J Comp Psychol, vol.98, no.1, pp. 10–28. 10.1037/0735‑7036.98.1.10
    https://doi.org/10.1037/0735-7036.98.1.10 [Google Scholar]
  32. Ridgway, S., Carder, D., Jeffries, M., & Todd, M.
    (2012) “Spontaneous human speech mimicry by a cetacean,” Current Biology, vol.22, no.20. Elsevier, pp. R860–R861. 10.1016/j.cub.2012.08.044
    https://doi.org/10.1016/j.cub.2012.08.044 [Google Scholar]
  33. Rossa, A., & Kimb, S. J.
    (Oct. 2021) “Behavioral experiments for gathering labeled animal vocalization data,” inProceedings of the 3rd International Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots, p.35. Accessed: Oct. 21, 2022. [Online]. Available: vihar-2021.vihar.org/assets/vihar-2021-proceedings-v3.pdf
    [Google Scholar]
  34. Rothenberg, D.
    (2008) “Whale music: Anatomy of an interspecies duet,” Leonardo Music Journal, vol.181, pp. 47–53. 10.1162/lmj.2008.18.47
    https://doi.org/10.1162/lmj.2008.18.47 [Google Scholar]
  35. Rychen, J., Rodrigues, D. I., Tomka, T., Rüttimann, L., Yamahachi, H., & Hahnloser, R. H. R.
    (2021) “A system for controlling vocal communication networks,” Sci Rep, vol.11, no.1, pp. 1–15. 10.1038/s41598‑021‑90549‑0
    https://doi.org/10.1038/s41598-021-90549-0 [Google Scholar]
  36. Shapiro, A. D.
    (2008) “Orchestration : the movement and vocal behavior of free-ranging Norwegian killer whales (Orcinus orca),” Massachusetts Institute of Technology. 10.1575/1912/2421
    https://doi.org/10.1575/1912/2421 [Google Scholar]
  37. Shen, L., Henson, B., Zakharov, Y., & Mitchell, P.
    (2020) “Digital Self-Interference Cancellation for Full-Duplex Underwater Acoustic Systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.67, no.1, pp. 192–196. 10.1109/TCSII.2019.2904391
    https://doi.org/10.1109/TCSII.2019.2904391 [Google Scholar]
  38. Shen, L., Zakharov, Y., Henson, B., Morozs, N., & Mitchell, P. D.
    (2020) “Adaptive filtering for full-duplex UWA systems with time-varying self-interference channel,” IEEE Access, vol.81, pp. 187590–187604. 10.1109/ACCESS.2020.3031010
    https://doi.org/10.1109/ACCESS.2020.3031010 [Google Scholar]
  39. Sondhi, M. M.
    (1967) “An Adaptive Echo Canceller,” Bell System Technical Journal, vol.46, no.3, pp. 497–511. 10.1002/j.1538‑7305.1967.tb04231.x
    https://doi.org/10.1002/j.1538-7305.1967.tb04231.x [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error