Volume 24, Issue 1
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
Buy:$35.00 + Taxes



Symbolic representation acquisition is the complex cognitive process consisting of learning to use a symbol to stand for something else. A variety of non-human animals can engage in symbolic representation learning. One particularly complex form of symbol representation is the associations between orthographic symbols and speech sounds, known as grapheme–phoneme correspondence. To date, there has been little evidence that animals can learn this form of symbolic representation. Here, we evaluated whether an Umbrella cockatoo () can learn letter-speech correspondence using English words. The bird-participant was trained with phonics instruction and then tested on pairs of index cards while the experimenter spoke the word. The words were unknown to the bird and the experimenter was blinded to the correct card position. The cockatoo’s accuracy ( = 71%) was statistically significant. Further, we found a strong correlation between the bird’s word-identification success and the number of overlapping letters between words, where the more overlapping letters between words, the more likely the cockatoo answered incorrectly. Our results strongly suggest that parrots may have the ability to learn grapheme–phoneme correspondences.


Article metrics loading...

Loading full text...

Full text loading...


  1. Addessi, E., Crescimbene, L., & Visalberghi, E.
    (2008) Food and token quantity discrimination in capuchin monkeys (Cebus apella). Animal Cognition, 11(2), 275–282. 10.1007/s10071‑007‑0111‑6
    https://doi.org/10.1007/s10071-007-0111-6 [Google Scholar]
  2. Anderson, P. K.
    (2014) Social Dimensions of the Human–Avian Bond: Parrots and Their Persons. Anthrozoös, 27(3), 371–387. 10.2752/175303714X13903827488006
    https://doi.org/10.2752/175303714X13903827488006 [Google Scholar]
  3. Auersperg, A. M. I., Szabo, B., von Bayern, A. M. P., & Kacelnik, A.
    (2012) Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. Current Biology, 22(21), R903–R904. 10.1016/j.cub.2012.09.002
    https://doi.org/10.1016/j.cub.2012.09.002 [Google Scholar]
  4. Bickerton, D.
    (1990) Language and species. University of Chicago Press. 10.7208/chicago/9780226220949.001.0001
    https://doi.org/10.7208/chicago/9780226220949.001.0001 [Google Scholar]
  5. Brakke, K. E., & Savage-Rumbaugh, E. S.
    (1995) The development of language skills in bonobo and chimpanzee: I. Comprehension. Language & Communication, 15(2), 121–148. 10.1016/0271‑5309(95)00001‑7
    https://doi.org/10.1016/0271-5309(95)00001-7 [Google Scholar]
  6. Brucks, D., & von Bayern, A. M. P.
    (2020) Parrots Voluntarily Help Each Other to Obtain Food Rewards. Current Biology, 30(2), 292–297.e5. 10.1016/j.cub.2019.11.030
    https://doi.org/10.1016/j.cub.2019.11.030 [Google Scholar]
  7. Colbert-White, E. N., Hall, H. C., & Fragaszy, D. M.
    (2016) Variations in an African Grey parrot’s speech patterns following ignored and denied requests. Animal Cognition, 19(3), 459–469. 10.1007/s10071‑015‑0946‑1
    https://doi.org/10.1007/s10071-015-0946-1 [Google Scholar]
  8. Cunha, J. & Rhoads, C.
    (2020) Use of a Tablet-Based Communication Board and Subsequent Choice and Behavioral Correspondences in a Goffin’s Cockatoo (Cacatua goffiana). InProceedings of the Seventh International Conference on Animal–Computer Interaction (ACI’2020). Association for Computing Machinery, New York, NY, USA, Article81, 1–9. 10.1145/3446002.3446063
    https://doi.org/10.1145/3446002.3446063 [Google Scholar]
  9. Derenne, A.
    (2018) Schedules of Reinforcement. Encyclopedia of Animal Cognition and Behavior, 1–11. 10.1007/978‑3‑319‑47829‑6_1555‑1
    https://doi.org/10.1007/978-3-319-47829-6_1555-1 [Google Scholar]
  10. Foster, T. A., Hackenberg, T. D., & Vaidya, M.
    (2001) Second-order schedules of token reinforcement with pigeons: Effects of fixed- and variable-ratio exchange schedules. Journal of the Experimental Analysis of Behavior, 76(2), 159–178. 10.1901/jeab.2001.76‑159
    https://doi.org/10.1901/jeab.2001.76-159 [Google Scholar]
  11. Fredrick, L. D., Davis, D. H., Alberto, P. A., & Waugh, R. E.
    (2013) From Initial Phonics to Functional Phonics: Teaching Word-Analysis Skills to Students with Moderate Intellectual Disability. Education and Training in Autism and Developmental Disabilities, 48(1), 49–66. www.jstor.org/stable/23879886
    [Google Scholar]
  12. Grainger, J.
    (1990) Word frequency and neighborhood frequency effects in lexical decision and naming. Journal of Memory and Language, 29(2), 228–244. 10.1016/0749‑596X(90)90074‑A
    https://doi.org/10.1016/0749-596X(90)90074-A [Google Scholar]
  13. Grainger, J., Dufau, S., Montant, M., Ziegler, J. C., & Fagot, J.
    (2012) Orthographic Processing in Baboons (Papio papio). Science, 336(6078), 245–248. 10.1126/science.1218152
    https://doi.org/10.1126/science.1218152 [Google Scholar]
  14. Habl, C., & Auersperg, A. M. I.
    (2017) The keybox: Shape-frame fitting during tool use in Goffin’s cockatoos (Cacatua goffiniana). PLOS ONE, 12(11), e0186859. 10.1371/journal.pone.0186859
    https://doi.org/10.1371/journal.pone.0186859 [Google Scholar]
  15. Hackenberg, T. D.
    (2009) TOKEN REINFORCEMENT: A REVIEW AND ANALYSIS. Journal of the Experimental Analysis of Behavior, 91(2), 257–286. 10.1901/jeab.2009.91‑257
    https://doi.org/10.1901/jeab.2009.91-257 [Google Scholar]
  16. Hannagan, T., Ziegler, J. C., Dufau, S., Fagot, J., Grainger, J.
    (2014) Deep learning of orthographic representations in baboons. PLoS One. 8;9(1):e84843. 10.1371/journal.pone.0084843. PMID: 24416300; PMCID: PMC3885623.
    https://doi.org/10.1371/journal.pone.0084843 [Google Scholar]
  17. Herman, L. M., Kuczaj, S. A., & Holder, M. D.
    (1993) Responses to anomalous gestural sequences by a language-trained dolphin: Evidence for processing of semantic relations and syntactic information. Journal of Experimental Psychology. General, 122(2), 184–194. 10.1037/0096‑3445.122.2.184
    https://doi.org/10.1037/0096-3445.122.2.184 [Google Scholar]
  18. Herman, L. M., Richards, D. G., & Wolz, J. P.
    (1984) Comprehension of sentences by bottlenosed dolphins. Cognition, 16(2), 129–219. 10.1016/0010‑0277(84)90003‑9
    https://doi.org/10.1016/0010-0277(84)90003-9 [Google Scholar]
  19. Hopper, L. M., Egelkamp, C. L., Fidino, M.
    (2019) An assessment of touchscreens for testing primate food preferences and valuations. Behav Res511, 639–650. 10.3758/s13428‑018‑1065‑0
    https://doi.org/10.3758/s13428-018-1065-0 [Google Scholar]
  20. Huskisson, Sarah & Jacobson, Sarah & Egelkamp, Crystal & Ross, Stephen & Hopper, Lydia
    (2020) Using a Touchscreen Paradigm to Evaluate Food Preferences and Response to Novel Photographic Stimuli of Food in Three Primate Species (Gorilla gorilla gorilla, Pan troglodytes, and Macaca fuscata). International Journal of Primatology. 411. 5–23. 10.1007/s10764‑020‑00131‑0
    https://doi.org/10.1007/s10764-020-00131-0 [Google Scholar]
  21. Kaminski, J., Call, J., & Fischer, J.
    (2004) Word Learning in a Domestic Dog: Evidence for “Fast Mapping.” Science, 304(5677), 1682–1683. 10.1126/science.1097859
    https://doi.org/10.1126/science.1097859 [Google Scholar]
  22. Kellog, W. N., & Kellogg, L. A.
    (1933) The Ape and the Child: A Comparative Study of the Enviornmental Influence Upon Early Behavior. Hafner Publishing Co. 10.1097/00006324‑193311000‑00009
    https://doi.org/10.1097/00006324-193311000-00009 [Google Scholar]
  23. Laumer, I. B., Massen, J. J. M., Wakonig, B., Lorck-Tympner, M., Carminito, C., & Auersperg, A. M. I.
    (2020) Tentative evidence for inequity aversion to unequal work-effort but not to unequal reward distribution in Goffin’s cockatoos. Ethology, 126(2), 185–194. 10.1111/eth.12947
    https://doi.org/10.1111/eth.12947 [Google Scholar]
  24. Linden, E.
    (1974) Apes, Men, and Language. Saturday Review Press. https://repository.library.georgetown.edu/handle/10822/766832
    [Google Scholar]
  25. Malagodi, E. F., Webbe, F. M., & Waddell, T. R.
    (1975) Second-order schedules of token reinforcement: Effects of varying the schedule of food presentation. Journal of the Experimental Analysis of Behavior, 24(2), 173–181. 10.1901/jeab.1975.24‑173
    https://doi.org/10.1901/jeab.1975.24-173 [Google Scholar]
  26. Mancini, C.
    (2017) Towards an animal-centered ethics for Animal–Computer Interaction. International Journal of Human-Computer Studies, 981pp. 221–233. 10.1016/j.ijhcs.2016.04.008
    https://doi.org/10.1016/j.ijhcs.2016.04.008 [Google Scholar]
  27. Mancini, C., Nannoni, E.
    (2022) Relevance, Impartiality, Welfare and Consent: Principles of an Animal-Centered Research Ethics. Frontiers in Animal Science, 31pp. 2673–6225. 10.3389/fanim.2022.800186
    https://doi.org/10.3389/fanim.2022.800186 [Google Scholar]
  28. Mejdell, C., Buvik, T., Jørgensenc, G., and Bøe, K.
    (2016) Horses can learn to use symbols to communicate their preferences. Applied Animal Behavior Science 2016; 184. 10.1016/j.applanim.2016.07.014
    https://doi.org/10.1016/j.applanim.2016.07.014 [Google Scholar]
  29. Mikolasch, S., Kotrschal, K., & Schloegl, C.
    (2011) African grey parrots (Psittacus erithacus) use inference by exclusion to find hidden food. Biology Letters, 7(6), 875–877. 10.1098/rsbl.2011.0500
    https://doi.org/10.1098/rsbl.2011.0500 [Google Scholar]
  30. O’Hara, M., Auersperg, A. M. I., Bugnyar, T., & Huber, L.
    (2015) Inference by Exclusion in Goffin Cockatoos (Cacatua goffini). PLOS ONE, 10(8), e0134894. 10.1371/journal.pone.0134894
    https://doi.org/10.1371/journal.pone.0134894 [Google Scholar]
  31. Pailian, H., Carey, S. E., Halberda, J., & Pepperberg, I. M.
    (2020) Age and Species Comparisons of Visual Mental Manipulation Ability as Evidence for its Development and Evolution. Scientific Reports, 10(1), 7689. 10.1038/s41598‑020‑64666‑1
    https://doi.org/10.1038/s41598-020-64666-1 [Google Scholar]
  32. Pepperberg, I. M.
    (1981) Functional Vocalizations by an African Grey Parrot (Psittacus erithacus). Zeitschrift Für Tierpsychologie, 55(2), 139–160. 10.1111/j.1439‑0310.1981.tb01265.x
    https://doi.org/10.1111/j.1439-0310.1981.tb01265.x [Google Scholar]
  33. (1987) Acquisition of the same/different concept by an African Grey parrot (Psittacus erithacus): Learning with respect to categories of color, shape, and material. Animal Learning & Behavior, 15(4), 423–432. 10.3758/BF03205051
    https://doi.org/10.3758/BF03205051 [Google Scholar]
  34. (2006) Grey parrot (Psittacus erithacus) numerical abilities: Addition and further experiments on a zero-like concept. Journal of Comparative Psychology, 120(1), 1–11. 10.1037/0735‑7036.120.1.1
    https://doi.org/10.1037/0735-7036.120.1.1 [Google Scholar]
  35. (2008) Alex & Me: How a scientist and a parrot discovered a hidden world of animal intelligence – And formed a deep bond in the process. Harper-Collins.
    [Google Scholar]
  36. (2017) Symbolic communication in nonhuman animals. InAPA handbook of comparative psychology: Basic concepts, methods, neural substrate, and behavior, Vol. 1 (pp. 663–679). American Psychological Association. 10.1037/0000011‑032
    https://doi.org/10.1037/0000011-032 [Google Scholar]
  37. Pepperberg, I. M., & Carey, S.
    (2012) Grey parrot number acquisition: The inference of cardinal value from ordinal position on the numeral list. Cognition, 125(2), 219–232. 10.1016/j.cognition.2012.07.003
    https://doi.org/10.1016/j.cognition.2012.07.003 [Google Scholar]
  38. Pepperberg, I. M., Grey, S. L., Lesser, J. S., & Hartsfield, L. A.
    (2017) Piagetian liquid conservation in grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 131(4), 370–383. 10.1037/com0000085
    https://doi.org/10.1037/com0000085 [Google Scholar]
  39. Pepperberg, I. M., Grey, S. L., Mody, S., Cornero, F. M., & Carey, S.
    (2019) Logical reasoning by a Grey parrot? A case study of the disjunctive syllogism. Behaviour, 156(5–8), 409–445. 10.1163/1568539X‑00003528
    https://doi.org/10.1163/1568539X-00003528 [Google Scholar]
  40. Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., & Hartsfield, L. A.
    (2013) Reasoning by inference: Further studies on exclusion in grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127(3), 272–281. 10.1037/a0031641
    https://doi.org/10.1037/a0031641 [Google Scholar]
  41. Perlman, M., & Clark, N.
    (2015) Learned vocal and breathing behavior in an enculturated gorilla. Animal Cognition, 18(5), 1165–1179. 10.1007/s10071‑015‑0889‑6
    https://doi.org/10.1007/s10071-015-0889-6 [Google Scholar]
  42. Pinker, S., & Bloom, P.
    (1990) Natural language and natural selection. Behavioral and Brain Sciences, 13(04), 707–727. 10.1017/S0140525X00081061
    https://doi.org/10.1017/S0140525X00081061 [Google Scholar]
  43. Premack, A. J., & Premack, D.
    (1972) Teaching Language to an Ape. Scientific American, 227(4), 92–99. JSTOR. 10.1038/scientificamerican1072‑92
    https://doi.org/10.1038/scientificamerican1072-92 [Google Scholar]
  44. R Core Team
    R Core Team (2015) R: A language and environment for statistical computing.
    [Google Scholar]
  45. Rumbaugh, D. M.
    (1977) Language Learning by a Chimpanzee: The Lana Project. Elsevier. 10.1016/C2013‑0‑11427‑4
    https://doi.org/10.1016/C2013-0-11427-4 [Google Scholar]
  46. Savage-Rumbaugh, E. S., & Lewin, R.
    (1994) Kanzi: The ape at the brink of the human mind. Wiley. https://agris.fao.org/agris-search/search.do?recordID=US9533108
    [Google Scholar]
  47. Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., Brakke, K. E., Williams, S. L., Rumbaugh, D. M., & Bates, E.
    (1993) Language Comprehension in Ape and Child. Monographs of the Society for Research in Child Development, 58(3/4), i–252. 10.2307/1166068
    https://doi.org/10.2307/1166068 [Google Scholar]
  48. Scarf, D., Boy, K., Reinert, A. U., Devine, J., Güntürkün, O., & Colombo, M.
    (2016) Orthographic processing in pigeons (Columba livia). Proceedings of the National Academy of Sciences, 201607870. 10.1073/pnas.1607870113
    https://doi.org/10.1073/pnas.1607870113 [Google Scholar]
  49. Seidenberg, M. S.
    (2017) Language at the speed of sight: How we read, why so many can’t, and what can be done about it. Basic Books.
    [Google Scholar]
  50. Skinner, B. F.
    (1938) The Behavior of Organisms: An Experimental Analysis. Appleton-Century.
    [Google Scholar]
  51. Washburn, David A.
    2015 The Four Cs of Psychological Wellbeing: Lessons from Three Decades of Computer-based Environmental Enrichment. 10.12966/abc.08.02.2015
    https://doi.org/10.12966/abc.08.02.2015 [Google Scholar]
  52. Wasserman, E. A., Brooks, D. I., & McMurray, B.
    (2015) Pigeons acquire multiple categories in parallel via associative learning: a parallel to human word learning?Cognition, 1361, 99–122. 10.1016/j.cognition.2014.11.020
    https://doi.org/10.1016/j.cognition.2014.11.020 [Google Scholar]
  53. Wellman, H. M., & Miller, K. F.
    (1986) Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4(1), 31–42. 10.1111/j.2044‑835X.1986.tb00995.x
    https://doi.org/10.1111/j.2044-835X.1986.tb00995.x [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): avian; cockatoo; grapheme–phoneme correspondence; parrot; phonics; symbolic representation
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error