1887
Volume 24, Issue 2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Birds produce different types of sounds in different contexts such as begging for food in youngsters, alerting to a danger, defending a territory or attracting a sexual partner. About half of the bird species are able to transform their vocalizations through imitation, improvisation or invention of sounds. Here we review the different experimental procedures that have been used to study the learning capacities of birds in the vocal domain and in the auditory domain, with a particular emphasis on recent technological developments. Nowadays, it is possible to record individual vocalizations of birds living in social groups or to record continuously the vocal ontogeny of birdsong. In conditioning experiments, new paradigms have successfully replaced food rewards with a socio-sexual reward. It is possible to engage in vocal interactions with a bird using dedicated computer systems. In both the laboratory and more recently in the field, different techniques have been used to train young oscine songbirds to learn from acoustic models. The use of virtual social environments and robots as social agents are also promising avenues. All together, these new techniques will permit researchers to explore more deeply the umwelt of bird species.

Loading

Article metrics loading...

/content/journals/10.1075/is.22043.der
2023-11-03
2024-09-17
Loading full text...

Full text loading...

References

  1. Adret, P.
    (1993a) Operant conditioning, song learning and imprinting to taped song in the zebra finch. Animal Behaviour, 461, 149–159. 10.1006/anbe.1993.1170
    https://doi.org/10.1006/anbe.1993.1170 [Google Scholar]
  2. (1993b) Vocal learning induced with operant techniques: an overview. Netherlands Journal of Zoology, 431, 125–125. 10.1163/156854293X00250
    https://doi.org/10.1163/156854293X00250 [Google Scholar]
  3. (1997) Discrimination of video images by zebra finches (Taeniopygia guttata): direct evidence from song performance. Journal of Comparative Psychology, 1111, 115–125. 10.1037/0735‑7036.111.2.115
    https://doi.org/10.1037/0735-7036.111.2.115 [Google Scholar]
  4. Akçay, Ç. L., Tom, M. E., Campbell, S. E., & Beecher, M. D.
    (2013) Song type matching is an honest early threat signal in a hierarchical animal communication system. Proceedings of the Royal Society B: Biological Sciences, 2801, 20122517. 10.1098/rspb.2012.2517
    https://doi.org/10.1098/rspb.2012.2517 [Google Scholar]
  5. Anisimov, V. N., Herbst, J. A., Abramchuk, A. N., Latanov, A. V., Hahnloser, R. H., & Vyssotski, A. L.
    (2014) Reconstruction of vocal interactions in a group of small songbirds. Nature Methods, 111, 1135–1137. 10.1038/nmeth.3114
    https://doi.org/10.1038/nmeth.3114 [Google Scholar]
  6. Araguas, A., Guellaï, B., Gauthier, P., Richer, F., Montone, G., Chopin, A., & Derégnaucourt, S.
    (2022) Design of a robotic zebra finch for experimental studies on developmental song learning. Journal of Experimental Biology, 2251, jeb242949. 10.1242/jeb.242949
    https://doi.org/10.1242/jeb.242949 [Google Scholar]
  7. Arnold, F., Staniszewski, M. S., Pelzl, L., Ramenda, C., Gahr, M., & Hoffmann, S.
    (2022) Vision and vocal communication guide three-dimensional spatial coordination of zebra finches during wind-tunnel flights. Nature Ecology & Evolution, 61, 1221–1230. 10.1038/s41559‑022‑01800‑4
    https://doi.org/10.1038/s41559-022-01800-4 [Google Scholar]
  8. Balsby, T. J., & Bradbury, J. W.
    (2009) Vocal matching by orange-fronted conures (Aratinga canicularis). Behavioural Processes, 821, 133–139. 10.1016/j.beproc.2009.05.005
    https://doi.org/10.1016/j.beproc.2009.05.005 [Google Scholar]
  9. Baptista, L. F., & Petrinovich, L.
    (1984) Social interaction, sensitive phases and the song template hypothesis in the white-crowned sparrow. Animal Behaviour, 321, 172–181. 10.1016/S0003‑3472(84)80335‑8
    https://doi.org/10.1016/S0003-3472(84)80335-8 [Google Scholar]
  10. Baptista, L. F., & Petrinovich, L.
    (1986) Song development in the white-crowned sparrow: social factors and sex differences. Animal Behaviour, 341, 1359–1371. 10.1016/S0003‑3472(86)80207‑X
    https://doi.org/10.1016/S0003-3472(86)80207-X [Google Scholar]
  11. Beecher, M. D., Campbell, S. E., Burt, J. M., Hill, C. E., & Nordby, J. C.
    (2000) Song-type matching between neighbouring song sparrows. Animal Behaviour, 591, 21–27. 10.1006/anbe.1999.1276
    https://doi.org/10.1006/anbe.1999.1276 [Google Scholar]
  12. Beecher, M. D., & Akçay, Ç.
    (2021) Social factors in bird-song development: Learning to sing with friends and rivals. Learning & Behavior, 491, 137–149. 10.3758/s13420‑020‑00441‑6
    https://doi.org/10.3758/s13420-020-00441-6 [Google Scholar]
  13. Benichov, J. I., Benezra, S. E., Vallentin, D., Globerson, E., Long, M. A., & Tchernichovski, O.
    (2016) The forebrain song system mediates predictive call timing in female and male zebra finches. Current Biology, 261, 309–318. 10.1016/j.cub.2015.12.037
    https://doi.org/10.1016/j.cub.2015.12.037 [Google Scholar]
  14. Berg, K. S., Delgado, S., & Mata-Betancourt, A.
    (2019) Phylogenetic and kinematic constraints on avian flight signals. Proceedings of the Royal Society B, 2861, 20191083. 10.1098/rspb.2019.1083
    https://doi.org/10.1098/rspb.2019.1083 [Google Scholar]
  15. Bierbach, D., Francisco, F., Lukas, J., Landgraf, T., Maxeiner, M., Romanczuk, P., … & Krause, J.
    (2021) Biomimetic robots promote the 3Rs Principle in animal testing. InALIFE 2021: The 2021 Conference on Artificial Life. MIT Press. 10.1162/isal_a_00375
    https://doi.org/10.1162/isal_a_00375 [Google Scholar]
  16. Birkhead, T. R., & Van Balen, S.
    (2008) Bird-keeping and the development of ornithological science. Archives of Natural History, 351, 281–305. 10.3366/E0260954108000399
    https://doi.org/10.3366/E0260954108000399 [Google Scholar]
  17. Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., … & Kirschel, A. N.
    (2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. Journal of Applied Ecology, 481, 758–767. 10.1111/j.1365‑2664.2011.01993.x
    https://doi.org/10.1111/j.1365-2664.2011.01993.x [Google Scholar]
  18. Bolhuis, J. J. & Everaert, M.
    (2013) Birdsong, speech, and language: exploring the evolution of mind and brain. MIT press. 10.7551/mitpress/9322.001.0001
    https://doi.org/10.7551/mitpress/9322.001.0001 [Google Scholar]
  19. Burt, J. M., O’Loghlen, A. L., Templeton, C. N., Campbell, S. E., & Beecher, M. D.
    (2007) Assessing the importance of social factors in bird song learning: a test using computer-simulated tutors. Ethology, 1131, 917–925. 10.1111/j.1439‑0310.2007.01415.x
    https://doi.org/10.1111/j.1439-0310.2007.01415.x [Google Scholar]
  20. Butler, S. R., & Fernández-Juricic, E.
    (2014) European starlings recognize the location of robotic conspecific attention. Biology Letters, 101, 20140665. 10.1098/rsbl.2014.0665
    https://doi.org/10.1098/rsbl.2014.0665 [Google Scholar]
  21. Carouso-Peck, S., Goldstein, M. H., & Fitch, W. T.
    (2021) The many functions of vocal learning. Philosophical Transactions of the Royal Society B, 376, 20200235. 10.1098/rstb.2020.0235
    https://doi.org/10.1098/rstb.2020.0235 [Google Scholar]
  22. Clouzot, M., & Kreutzer, M.
    (2020) Croiser l’histoire des savoirs empiriques et les connaissances éthologiques pour concevoir le point de vue des oiseaux chanteurs. In : Croiser les sources pour lire les animaux (ed.E. Baratay). Presses Universitaires de la Sorbonne, pp.145–157.
    [Google Scholar]
  23. Colavita, F. B.
    (1974) Human sensory dominance. Perception & Psychophysics, 161, 409–412. 10.3758/BF03203962
    https://doi.org/10.3758/BF03203962 [Google Scholar]
  24. Crates, R., Langmore, N., Ranjard, L., Stojanovic, D., Rayner, L., Ingwersen, D., & Heinsohn, R.
    (2021) Loss of vocal culture and fitness costs in a critically endangered songbird. Proceedings of the Royal Society B, 2881, 20210225. 10.1098/rspb.2021.0225
    https://doi.org/10.1098/rspb.2021.0225 [Google Scholar]
  25. Derégnaucourt, S.
    (2011) Birdsong learning in the laboratory, with especial reference to the song of the Zebra Finch (Taeniopygia guttata). Interaction Studies, 121, 324–350. 10.1075/is.12.2.07der
    https://doi.org/10.1075/is.12.2.07der [Google Scholar]
  26. Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O.
    (2005) How sleep affects the developmental learning of bird song. Nature, 4331, 710–716. 10.1038/nature03275
    https://doi.org/10.1038/nature03275 [Google Scholar]
  27. Derégnaucourt, S., Poirier, C., Van der Kant, A., Van der Linden, A., & Gahr, M.
    (2013) Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song. Journal of Physiology-Paris, 1071, 210–218. 10.1016/j.jphysparis.2012.08.003
    https://doi.org/10.1016/j.jphysparis.2012.08.003 [Google Scholar]
  28. Derégnaucourt, S., Saar, S., & Gahr, M.
    (2009) Dynamics of crowing development in the domestic Japanese quail (Coturnix coturnix japonica). Proceedings of the Royal Society B: Biological Sciences, 2761, 2153–2162. 10.1098/rspb.2009.0016
    https://doi.org/10.1098/rspb.2009.0016 [Google Scholar]
  29. (2012) Melatonin affects the temporal pattern of vocal signatures in birds. Journal of Pineal Research, 531, 245–258. 10.1111/j.1600‑079X.2012.00993.x
    https://doi.org/10.1111/j.1600-079X.2012.00993.x [Google Scholar]
  30. Deshpande, M., Pirlepesov, F., & Lints, T.
    (2014) Rapid encoding of an internal model for imitative learning. Proceedings of the Royal Society B: Biological Sciences, 2811, 20132630. 10.1098/rspb.2013.2630
    https://doi.org/10.1098/rspb.2013.2630 [Google Scholar]
  31. Desmedt, L., George, I., Mohamed Benkada, A., Hervé, M., Aubin, T., Derégnaucourt, S., & Lumineau, S.
    (2020) Maternal presence influences vocal development in the Japanese quail (Coturnix c. japonica). Ethology, 1261, 553–562. 10.1111/eth.13007
    https://doi.org/10.1111/eth.13007 [Google Scholar]
  32. Doupe, A. J., & Kuhl, P. K.
    (1999) Birdsong and human speech: common themes and mechanisms. Annual Review of Neuroscience, 221, 567–631. 10.1146/annurev.neuro.22.1.567
    https://doi.org/10.1146/annurev.neuro.22.1.567 [Google Scholar]
  33. Fagot, J., & Paleressompoulle, D.
    (2009) Automatic testing of cognitive performance in baboons maintained in social groups. Behavior Research Methods, 411, 396–404. 10.3758/BRM.41.2.396
    https://doi.org/10.3758/BRM.41.2.396 [Google Scholar]
  34. Fehér, O., Wang, H., Saar, S., Mitra, P. P., & Tchernichovski, O.
    (2009) De novo establishment of wild-type song culture in the zebra finch. Nature, 4591, 564–568. 10.1038/nature07994
    https://doi.org/10.1038/nature07994 [Google Scholar]
  35. Fritz, J-M.
    (2016) Le chant de l’oiseau est-il une musique ? Réponses du clerc, réponses du poète. In : D’ailes et d’oiseaux au Moyen Âge. Langue, littérature et histoire des sciences (ed. C. Thomasset). Honoré Champion : Paris, pp219–240.
    [Google Scholar]
  36. Gardner, T. J., Naef, F., & Nottebohm, F.
    (2005) Freedom and rules: the acquisition and reprogramming of a bird’s learned song. Science, 3081, 1046–1049. 10.1126/science.1108214
    https://doi.org/10.1126/science.1108214 [Google Scholar]
  37. Gehrold, A., Leitner, S., Laucht, S., & Derégnaucourt, S.
    (2013) Heterospecific exposure affects the development of secondary sexual traits in male zebra finches (Taeniopygia guttata). Behavioural processes, 941, 67–75. 10.1016/j.beproc.2012.12.008
    https://doi.org/10.1016/j.beproc.2012.12.008 [Google Scholar]
  38. George, J. M., Bell, Z. W., Condliffe, D., Dohrer, K., Abaurrea, T., Spencer, K., … & Clayton, D. F.
    (2020) Acute social isolation alters neurogenomic state in songbird forebrain. Proceedings of the National Academy of Sciences, 1171, 23311–23316. 10.1073/pnas.1820841116
    https://doi.org/10.1073/pnas.1820841116 [Google Scholar]
  39. Gill, L. F., Goymann, W., Ter Maat, A., & Gahr, M.
    (2015) Patterns of call communication between group-housed zebra finches change during the breeding cycle. Elife, 41, e07770. 10.7554/eLife.07770
    https://doi.org/10.7554/eLife.07770 [Google Scholar]
  40. Gill, L. F., D’Amelio, P. B., Adreani, N. M., Sagunsky, H., Gahr, M. C., & Ter Maat, A.
    (2016) A minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level resolution. Methods in Ecology and Evolution, 71, 1349–1358. 10.1111/2041‑210X.12610
    https://doi.org/10.1111/2041-210X.12610 [Google Scholar]
  41. Gribovskiy, A., Halloy, J., Deneubourg, J. L., & Mondada, F.
    (2018) Designing a socially integrated mobile robot for ethological research. Robotics and Autonomous Systems, 1031, 42–55. 10.1016/j.robot.2018.02.003
    https://doi.org/10.1016/j.robot.2018.02.003 [Google Scholar]
  42. Hervieux de Chanteloup, J. C.
    (1709) Nouveau traité des serins de canarie. Paris : Claude Prudhomme.
    [Google Scholar]
  43. Hoffmann, S., Trost, L., Voigt, C., Leitner, S., Lemazina, A., Sagunsky, H., … & Gahr, M.
    (2019) Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nature communications, 101, 1–11. 10.1038/s41467‑019‑10593‑3
    https://doi.org/10.1038/s41467-019-10593-3 [Google Scholar]
  44. Hultsch, H., Schleuss, F., & Todt, D.
    (1999) Auditory–visual stimulus pairing enhances perceptual learning in a songbird. Animal Behaviour, 581, 143–149. 10.1006/anbe.1999.1120
    https://doi.org/10.1006/anbe.1999.1120 [Google Scholar]
  45. Hyland Bruno, J., Jarvis, E. D., Liberman, M., & Tchernichovski, O.
    (2021) Birdsong learning and culture: analogies with human spoken language. Annual Review of Linguistics, 71, 449–472. 10.1146/annurev‑linguistics‑090420‑121034
    https://doi.org/10.1146/annurev-linguistics-090420-121034 [Google Scholar]
  46. Ikebuchi, M., & Okanoya, K.
    (1999) Male zebra finches and Bengalese finches emit directed songs to the video images of conspecific females projected onto a TFT display. Zoological Science, 161, 63–70. 10.2108/zsj.16.63
    https://doi.org/10.2108/zsj.16.63 [Google Scholar]
  47. James, L. S., & Sakata, J. T.
    (2017) Learning biases underlie “universals” in avian vocal sequencing. Current Biology, 271, 3676–3682. 10.1016/j.cub.2017.10.019
    https://doi.org/10.1016/j.cub.2017.10.019 [Google Scholar]
  48. Janik, V. M., & Slater, P. J.
    (1997) Vocal learning in mammals. Advances in the Study of Behaviour, 261, 59–100. 10.1016/S0065‑3454(08)60377‑0
    https://doi.org/10.1016/S0065-3454(08)60377-0 [Google Scholar]
  49. Jolly, L., Pittet, F., Caudal, J. P., Mouret, J. B., Houdelier, C., Lumineau, S., & de Margerie, E.
    (2016) Animal-to-robot social attachment: initial requisites in a gallinaceous bird. Bioinspiration & biomimetics, 111, 016007. 10.1088/1748‑3190/11/1/016007
    https://doi.org/10.1088/1748-3190/11/1/016007 [Google Scholar]
  50. Jones, A. E., ten Cate, C., & Bijleveld, C. C.
    (2001) The interobserver reliability of scoring sonagrams by eye: a study on methods, illustrated on zebra finch songs. Animal Behaviour, 41, 791–801. 10.1006/anbe.2001.1810
    https://doi.org/10.1006/anbe.2001.1810 [Google Scholar]
  51. Kroodsma, D., Hamilton, D., Sánchez, J. E., Byers, B. E., Fandiño-Mariño, H., Stemple, D. W., ... & Powell, G. V.
    (2013) Behavioral evidence for song learning in the suboscine bellbirds (Procnias spp.; Cotingidae). The Wilson Journal of Ornithology, 1251, 1–14. 10.1676/12‑033.1
    https://doi.org/10.1676/12-033.1 [Google Scholar]
  52. Lachlan, R. F., Verhagen, L., Peters, S., & Cate, C. T.
    (2010) Are there species-universal categories in bird song phonology and syntax? A comparative study of chaffinches (Fringilla coelebs), zebra finches (Taeniopygia guttata), and swamp sparrows (Melospiza georgiana). Journal of Comparative Psychology, 1241, 92. 10.1037/a0016996
    https://doi.org/10.1037/a0016996 [Google Scholar]
  53. Lafon, G., Howard, S. R., Paffhausen, B. H., Avarguès-Weber, A., & Giurfa, M.
    (2021) Motion cues from the background influence associative color learning of honey bees in a virtual-reality scenario. Scientific Reports, 111, 1–20. 10.1038/s41598‑021‑00630‑x
    https://doi.org/10.1038/s41598-021-00630-x [Google Scholar]
  54. Lehrman, D. S.
    (1953) A critique of Konrad Lorenz’s theory of instinctive behavior. The Quarterly Review of Biology, 281, 337–363. www.jstor.org/stable/2813453. 10.1086/399858
    https://doi.org/10.1086/399858 [Google Scholar]
  55. Lerch, A., Roy, P., Pachet, F., & Nagle, L.
    (2011) Closed-loop bird–computer interactions: a new method to study the role of bird calls. Animal Cognition, 141, 203–211. 10.1007/s10071‑010‑0353‑6
    https://doi.org/10.1007/s10071-010-0353-6 [Google Scholar]
  56. Levinson, S. C.
    (2016) Turn-taking in human communication–origins and implications for language processing. Trends in Cognitive Sciences, 201, 6–14. 10.1016/j.tics.2015.10.010
    https://doi.org/10.1016/j.tics.2015.10.010 [Google Scholar]
  57. Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M., … & Tchernichovski, O.
    (2013) Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature, 4981, 104–108. 10.1038/nature12173
    https://doi.org/10.1038/nature12173 [Google Scholar]
  58. Lipkind, D., Zai, A. T., Hanuschkin, A., Marcus, G. F., Tchernichovski, O., & Hahnloser, R. H.
    (2017) Songbirds work around computational complexity by learning song vocabulary independently of sequence. Nature communications, 81, 1–11. 10.1038/s41467‑017‑01436‑0
    https://doi.org/10.1038/s41467-017-01436-0 [Google Scholar]
  59. Lipkind, D., Geambasu, A., & Levelt, C. C.
    (2020) The development of structured vocalizations in songbirds and humans: a comparative analysis. Topics in Cognitive Science, 121, 894–909. 10.1111/tops.12414
    https://doi.org/10.1111/tops.12414 [Google Scholar]
  60. Ljubičić, I., Bruno, J. H., & Tchernichovski, O.
    (2016) Social influences on song learning. Current Opinion in Behavioral Sciences, 71, 101–107. 10.1016/j.cobeha.2015.12.006
    https://doi.org/10.1016/j.cobeha.2015.12.006 [Google Scholar]
  61. Macedo-Lima, M., & Remage-Healey, L.
    (2020) Auditory learning in an operant task with social reinforcement is dependent on neuroestrogen synthesis in the male songbird auditory cortex. Hormones and behavior, 1211, 104713. 10.1016/j.yhbeh.2020.104713
    https://doi.org/10.1016/j.yhbeh.2020.104713 [Google Scholar]
  62. Marler, P.
    (1970) Birdsong and speech development: Could there be parallels? There may be basic rules governing vocal learning to which many species conform, including man. American Scientist, 581, 669–673. https://www.jstor.org/stable/27829317
    [Google Scholar]
  63. Marler, P., & Peters, S.
    (1977) Selective vocal learning in a sparrow. Science, 1981, 519–521. 10.1126/science.198.4316.519
    https://doi.org/10.1126/science.198.4316.519 [Google Scholar]
  64. Mennill, D. J., Doucet, S. M., Newman, A. E., Williams, H., Moran, I. G., Thomas, I. P., … & Norris, D. R.
    (2018) Wild birds learn songs from experimental vocal tutors. Current Biology, 281, 3273–3278. 10.1016/j.cub.2018.08.011
    https://doi.org/10.1016/j.cub.2018.08.011 [Google Scholar]
  65. (2019) Eavesdropping on adult vocal interactions does not enhance juvenile song learning: an experiment with wild songbirds. Animal Behaviour, 1551, 67–75. 10.1016/j.anbehav.2019.05.019
    https://doi.org/10.1016/j.anbehav.2019.05.019 [Google Scholar]
  66. Mets, D. G., & Brainard, M. S.
    (2018a) An automated approach to the quantitation of vocalizations and vocal learning in the songbird. PLoS Computational Biology, 141, e1006437. 10.1371/journal.pcbi.1006437
    https://doi.org/10.1371/journal.pcbi.1006437 [Google Scholar]
  67. (2018b) Genetic variation interacts with experience to determine interindividual differences in learned song. Proceedings of the National Academy of Sciences, 1151, 421–426. 10.1073/pnas.1713031115
    https://doi.org/10.1073/pnas.1713031115 [Google Scholar]
  68. (2019) Learning is enhanced by tailoring instruction to individual genetic differences. Elife, 81, e47216. 10.7554/eLife.47216
    https://doi.org/10.7554/eLife.47216 [Google Scholar]
  69. Mulligan, J. A., & Olsen, K. C.
    (1969) Communication in canary courtship calls. Bird vocalisation. Cambridge University Press, Cambridge, 165–184.
    [Google Scholar]
  70. Narula, G., Herbst, J. A., Rychen, J., & Hahnloser, R. H.
    (2018) Learning auditory discriminations from observation is efficient but less robust than learning from experience. Nature Communications, 91, 1–11. 10.1038/s41467‑018‑05422‑y
    https://doi.org/10.1038/s41467-018-05422-y [Google Scholar]
  71. Nicolai, J., Gundacker, C., Teeselink, K., & Güttinger, H. R.
    (2014) Human melody singing by bullfinches (Pyrrhula pyrrula) gives hints about a cognitive note sequence processing. Animal Cognition, 171, 143–155. 10.1007/s10071‑013‑0647‑6
    https://doi.org/10.1007/s10071-013-0647-6 [Google Scholar]
  72. Nobleville de, L. D. A.
    (1751) Aëdologie, ou Traité du rossignol franc ou chanteur. Paris : Debure l’ainé.
    [Google Scholar]
  73. Okanoya, K., & Kimura, T.
    (1993) A software bird call detector and its application to automated playback experiments. Bioacoustics, 51, 117–122. 10.1080/09524622.1993.9753233
    https://doi.org/10.1080/09524622.1993.9753233 [Google Scholar]
  74. Patricelli, G. L., Uy, J. A. C., Walsh, G., & Borgia, G.
    (2002) Male displays adjusted to female’s response. Nature, 4151, 279–280. 10.1038/415279a
    https://doi.org/10.1038/415279a [Google Scholar]
  75. Patricelli, G. L., Coleman, S. W., & Borgia, G.
    (2006) Male satin bowerbirds, Ptilonorhynchus violaceus, adjust their display intensity in response to female startling: an experiment with robotic females. Animal Behaviour, 711, 49–59. 10.1016/j.anbehav.2005.03.029
    https://doi.org/10.1016/j.anbehav.2005.03.029 [Google Scholar]
  76. Pepperberg, I. M.
    (1985) Social modeling theory: A possible framework for understanding avian vocal learning. The Auk, 1021, 854–864. https://www.jstor.org/stable/4086722
    [Google Scholar]
  77. Perry, A. C., Krakauer, A. H., McElreath, R., Harris, D. J., & Patricelli, G. L.
    (2019) Hidden Markov models reveal tactical adjustment of temporally clustered courtship displays in response to the behaviors of a robotic female. The American Naturalist, 1941, 1–16. 10.1086/703518
    https://doi.org/10.1086/703518 [Google Scholar]
  78. Petkov, C. I., & Jarvis, E. D.
    (2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in evolutionary neuroscience, 41, 12. 10.3389/fnevo.2012.00012
    https://doi.org/10.3389/fnevo.2012.00012 [Google Scholar]
  79. Poirier, C., Henry, L., Mathelier, M., Lumineau, S., Cousillas, H., & Hausberger, M.
    (2004) Direct social contacts override auditory information in the song-learning process in starlings (Sturnus vulgaris). Journal of Comparative Psychology, 1181, 179. 10.1037/0735‑7036.118.2.179
    https://doi.org/10.1037/0735-7036.118.2.179 [Google Scholar]
  80. Romano, D., Donati, E., Benelli, G., & Stefanini, C.
    (2019) A review on animal–robot interaction: from bio-hybrid organisms to mixed societies. Biological cybernetics, 1131, 201–225. 10.1007/s00422‑018‑0787‑5
    https://doi.org/10.1007/s00422-018-0787-5 [Google Scholar]
  81. Rychen, J., Rodrigues, D. I., Tomka, T., Rüttimann, L., Yamahachi, H., & Hahnloser, R. H.
    (2021) A system for controlling vocal communication networks. Scientific Reports, 111, 1–15. 10.1038/s41598‑021‑90549‑0
    https://doi.org/10.1038/s41598-021-90549-0 [Google Scholar]
  82. Shank, S. S., & Margoliash, D.
    (2009) Sleep and sensorimotor integration during early vocal learning in a songbird. Nature, 4581, 73–77. 10.1038/nature07615
    https://doi.org/10.1038/nature07615 [Google Scholar]
  83. Slater, P. J.
    (2003) Fifty years of bird song research: a case study in animal behaviour. Essays in Animal Behaviour: Celebrating 50 Years of Animal Behaviour, 651, 633–639. 10.1006/anbe.2003.2051
    https://doi.org/10.1006/anbe.2003.2051 [Google Scholar]
  84. Stowell, D., & Sueur, J.
    (2020) Ecoacoustics: acoustic sensing for biodiversity monitoring at scale. Remote Sensing in Ecology and Conservation, 61, 217–219. 10.1002/rse2.174
    https://doi.org/10.1002/rse2.174 [Google Scholar]
  85. Stresemann, E.
    (1947) Baron von Pernau, pioneer student of bird behavior. The Auk, 641, 35–52. 10.2307/4080061
    https://doi.org/10.2307/4080061 [Google Scholar]
  86. Tchernichovski, O., Lints, T., Mitra, P. P., & Nottebohm, F.
    (1999) Vocal imitation in zebra finches is inversely related to model abundance. Proceedings of the National Academy of Sciences, 961, 12901–12904. 10.1073/pnas.96.22.12901
    https://doi.org/10.1073/pnas.96.22.12901 [Google Scholar]
  87. Tchernichovski, O., Lints, T. J., Derégnaucourt, S., Cimenser, A., & Mitra, P. P.
    (2004) Studying the song development process: rationale and methods. Annals of the New York Academy of Sciences, 10161, 348–363. 10.1196/annals.1298.031
    https://doi.org/10.1196/annals.1298.031 [Google Scholar]
  88. Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B., & Mitra, P. P.
    (2000) A procedure for an automated measurement of song similarity. Animal behaviour, 591, 1167–1176. 10.1006/anbe.1999.1416
    https://doi.org/10.1006/anbe.1999.1416 [Google Scholar]
  89. Ten Cate, C.
    (2021) Re-evaluating vocal production learning in non-oscine birds. Philosophical Transactions of the Royal Society B, 3761, 20200249. 10.1098/rstb.2020.0249
    https://doi.org/10.1098/rstb.2020.0249 [Google Scholar]
  90. Thorpe, W. H.
    (1958) The learning of song patterns by birds, with especial reference to the song of the chaffinch Fringilla coelebs. Ibis, 100, 535–570. 10.1111/j.1474‑919X.1958.tb07960.x
    https://doi.org/10.1111/j.1474-919X.1958.tb07960.x [Google Scholar]
  91. Todt, D.
    (1975) Social learning of vocal patterns and modes of their application in grey parrots (Psittacus erithacus). Zeitschrift für Tierpsychologie, 391, 178–188. 10.1111/j.1439‑0310.1975.tb00907.x
    https://doi.org/10.1111/j.1439-0310.1975.tb00907.x [Google Scholar]
  92. Tokarev, K. & Tchernichovski, O.
    (2014) A novel paradigm for auditory discrimination training with social reinforcement in songbirds. BioRxiv : 004176. 10.1101/004176
    https://doi.org/10.1101/004176 [Google Scholar]
  93. Tyack, P. L.
    (2020) A taxonomy for vocal learning. Philosophical Transactions of the Royal Society B, 3751, 20180406. 10.1098/rstb.2018.0406
    https://doi.org/10.1098/rstb.2018.0406 [Google Scholar]
  94. Varkevisser, J. M., Simon, R., Mendoza, E., How, M., van Hijlkema, I., Jin, R., … & Riebel, K.
    (2021) Adding colour-realistic video images to audio playbacks increases stimulus engagement but does not enhance vocal learning in zebra finches. Animal cognition, 1–26. 10.1007/s10071‑021‑01547‑8
    https://doi.org/10.1007/s10071-021-01547-8 [Google Scholar]
  95. Vehrencamp, S. L.
    (2001) Is song–type matching a conventional signal of aggressive intentions?Proceedings of the Royal Society of London. Series B: Biological Sciences, 2681, 1637–1642. 10.1098/rspb.2001.1714
    https://doi.org/10.1098/rspb.2001.1714 [Google Scholar]
  96. Watson, S. K., Townsend, S. W., Schel, A. M., Wilke, C., Wallace, E. K., Cheng, L., … & Slocombe, K. E.
    (2015) Vocal learning in the functionally referential food grunts of chimpanzees. Current Biology, 251, 495–499. 10.1016/j.cub.2014.12.032
    https://doi.org/10.1016/j.cub.2014.12.032 [Google Scholar]
/content/journals/10.1075/is.22043.der
Loading
/content/journals/10.1075/is.22043.der
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): birds; learning capacities; technology; vocal interaction
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error