1887
Volume 24, Issue 2
  • ISSN 1572-0373
  • E-ISSN: 1572-0381

Abstract

Abstract

There is a strong disconnect between humans and other species in our societies. Zoos particularly expose this disconnect by displaying the asymmetry between visitors in search of entertainment, and animals often suffering from a lack of meaningful interactions and natural behaviors. In zoos, many species are unable to mate, raise young, or exhibit engagement behaviors. Enrichment is a way to enhance their quality of life, enabling them to express natural behaviors and reducing stereotypies. Prior work on sound-based enrichment and interactivity suggest that a better understanding of animals’ sensory needs and giving them options to shape their surroundings can yield substantial benefits. However, current zoo management and conservation practices lack tools and frameworks to leverage innovative technology to improve animal well-being and zookeepers’ ability to care for them. Ethical considerations are called for in developing such interventions as human understanding of animals’ worlds is still limited, and assumptions can have detrimental consequences. Based on several interventions, four principles are proposed to guide a more systematic implementation of sonic enrichment in zoos. The goal is to lay the groundwork for the design of the zoos of the future, with a focus on sounds, for the benefit of the animals.

Available under the CC BY-NC 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/is.22044.kle
2023-11-03
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/is.22044.kle.html?itemId=/content/journals/10.1075/is.22044.kle&mimeType=html&fmt=ahah

References

  1. Beecher, M. D., & Brenowitz, E. A.
    (2005) Functional aspects of song learning in songbirds. Trends in Ecology & Evolution, 20(3), 143–149. 10.1016/j.tree.2005.01.004
    https://doi.org/10.1016/j.tree.2005.01.004 [Google Scholar]
  2. Birke, L.
    (2002) Effects of browse, human visitors and noise on the behaviour of captive orang utans. Animal Welfare, 11 (2), 189–202. 10.1017/S0962728600028141
    https://doi.org/10.1017/S0962728600028141 [Google Scholar]
  3. Birke, L., Hosey, G., & Melfi, V.
    (2019) “you can’t really hug a tiger”: Zookeepers and their bonds with animals. Anthrozoös, 32(5), 597–612. 10.1080/08927936.2019.1645504
    https://doi.org/10.1080/08927936.2019.1645504 [Google Scholar]
  4. Blind, K.
    (1882) Wagner’s ”nibelung” and the Siegfried tale. The Cornhill Magazine.
    [Google Scholar]
  5. Boone, A., & Quelch, V.
    (2003) Effects of harp music therapy on canine patients in the veterinary hospital setting. Harp Therapy Journal, 8 (2), 4–5.
    [Google Scholar]
  6. Brent, L., & Weaver, O.
    (1996) The physiological and behavioral effects of radio music on singly housed baboons. Journal of Medical Primatology, 25 (5), 370–374. 10.1111/j.1600‑0684.1996.tb00031.x
    https://doi.org/10.1111/j.1600-0684.1996.tb00031.x [Google Scholar]
  7. Byrne, R. W., & Bates, L. A.
    (2010) Primate social cognition: uniquely primate, uniquely social, or just unique?Neuron, 65 (6), 815–830. 10.1016/j.neuron.2010.03.010
    https://doi.org/10.1016/j.neuron.2010.03.010 [Google Scholar]
  8. Carpenter, M., & Call, J.
    (2009) Comparing the imitative skills of children and nonhuman apes (No.1). Société Francophone de Primatologie. 10.4000/primatologie.263
    https://doi.org/10.4000/primatologie.263 [Google Scholar]
  9. Carter, M., Webber, S., & Sherwen, S.
    (2015) Naturalism and ACI: augmenting zoo enclosures with digital technology. InProceedings of the 12th international conference on advances in computer entertainment technology (pp.1–5). 10.1145/2832932.2837011
    https://doi.org/10.1145/2832932.2837011 [Google Scholar]
  10. Chamove, A.
    (1989) Cage design reduces emotionality in mice. Laboratory Animals, 23 (3), 215–219. 10.1258/002367789780810608
    https://doi.org/10.1258/002367789780810608 [Google Scholar]
  11. Charlton, B. D., Owen, M. A., & Swaisgood, R. R.
    (2019) Coevolution of vocal signal characteristics and hearing sensitivity in forest mammals. Nature Communications, 10 (1), 1–7. 10.1038/s41467‑019‑10768‑y
    https://doi.org/10.1038/s41467-019-10768-y [Google Scholar]
  12. Chiew, S. J., Butler, K. L., Sherwen, S. L., Coleman, G. J., Melfi, V., Burns, A., & Hemsworth, P. H.
    (2020) Effect of covering a visitor viewing area window on the behaviour of zoo-housed little penguins (Eudyptula minor). Animals, 10 (7), 1224. 10.3390/ani10071224
    https://doi.org/10.3390/ani10071224 [Google Scholar]
  13. Chosy, J., Wilson, M., & Santymire, R.
    (2014) Behavioral and physiological responses in felids to exhibit construction. Zoo Biology, 33(4), 267–274. 10.1002/zoo.21142
    https://doi.org/10.1002/zoo.21142 [Google Scholar]
  14. Claxton, A. M.
    (2011) The potential of the human-animal relationship as an environmental enrichment for the welfare of zoo-housed animals. Applied Animal Behaviour Science, 133 (1–2), 1–10. 10.1016/j.applanim.2011.03.002
    https://doi.org/10.1016/j.applanim.2011.03.002 [Google Scholar]
  15. Clay, A. W., Perdue, B. M., Gaalema, D. E., Dolins, F. L., & Bloomsmith, M. A.
    (2011) The use of technology to enhance zoological parks. Zoo Biology, 30 (5), 487–497. 10.1002/zoo.20353
    https://doi.org/10.1002/zoo.20353 [Google Scholar]
  16. Clutton Brock, J.
    (1987) A natural history of domesticated mammals. University of Texas Press.
    [Google Scholar]
  17. Colombelli-Negrel, D., Hauber, M. E., & Kleindorfer, S.
    (2014) Prenatal learning in an Australian songbird: habituation and individual discrimination in superb fairy-wren embryos. Proceedings of the Royal Society B: Biological Sciences, 281 (1797), 20141154. 10.1098/rspb.2014.1154
    https://doi.org/10.1098/rspb.2014.1154 [Google Scholar]
  18. Colombelli-Négrel, D., Hauber, M. E., Robertson, J., Sulloway, F. J., Hoi, H., Griggio, M., & Kleindorfer, S.
    (2012) Embryonic learning of vocal passwords in superb fairy-wrens reveals intruder cuckoo nestlings. Current Biology, 22 (22), 2155–2160. 10.1016/j.cub.2012.09.025
    https://doi.org/10.1016/j.cub.2012.09.025 [Google Scholar]
  19. Colombelli-Négrel, D.,
    (2016) Vocal imitation of mother’s calls by begging red-backed fairywren nestlings increases parental provisioning. The Auk: Ornithological Advances, 133 (2), 273–285. 10.1642/AUK‑15‑162.1
    https://doi.org/10.1642/AUK-15-162.1 [Google Scholar]
  20. Cook, S., & Hosey, G. R.
    (1995) Interaction sequences between chimpanzees and human visitors at the zoo. Zoo Biology, 14 (5), 431–440. 10.1002/zoo.1430140505
    https://doi.org/10.1002/zoo.1430140505 [Google Scholar]
  21. Cronin, K. A., Bethell, E. J., Jacobson, S. L., Egelkamp, C., Hopper, L. M., & Ross, S. R.
    (2018) Evaluating mood changes in response to anthropogenic noise with a response-slowing task in three species of zoo-housed primates. Animal Behavior & Cognition, 5 (2), 209–221. 10.26451/abc.05.02.03.2018
    https://doi.org/10.26451/abc.05.02.03.2018 [Google Scholar]
  22. Desjonquères, C., Gifford, T., & Linke, S.
    (2020) Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshwater Biology, 65 (1), 7–19. 10.1111/fwb.13356
    https://doi.org/10.1111/fwb.13356 [Google Scholar]
  23. Dowling, J. L., Colombelli-Négrel, D., & Webster, M. S.
    (2016) Kin signatures learned in the egg? red-backed fairy-wren songs are similar to their mother’s in-nest calls and songs. Frontiers in Ecology and Evolution, 41, 1–9. 10.3389/fevo.2016.00048
    https://doi.org/10.3389/fevo.2016.00048 [Google Scholar]
  24. Dugan, P. J., Clark, C. W., LeCun, Y. A., & Van Parijs, S. M.
    (2016) Phase 1: Dcl system research using advanced approaches for land-based or ship-based real-time recognition and localization of marine mammals-hpc system implementation. arXiv preprint arXiv:1605.00971.
    [Google Scholar]
  25. Edes, A. N., Baskir, E., Bauman, K. L., Chandrasekharan, N., Macek, M., & Tieber, A.
    (2021) Effects of crowd size, composition, and noise level on pool use in a mixed-species penguin colony. Animal Behavior and Cognition, 8(4), 507–520. 10.26451/abc.08.04.05.2021
    https://doi.org/10.26451/abc.08.04.05.2021 [Google Scholar]
  26. Frazer, J. G.
    (1888) The language of animals. The Archaeological Review, 1 (2), 81–91.
    [Google Scholar]
  27. French, F.,
    (2018a) High tech cognitive and acoustic enrichment for captive elephants. Journal of Neuroscience Methods, 3001, 173–183. 10.1016/j.jneumeth.2017.09.009
    https://doi.org/10.1016/j.jneumeth.2017.09.009 [Google Scholar]
  28. (2018b) Soundjam 2018: acoustic design for auditory enrichment. InProceedings of the Fifth International Conference on Animal-Computer Interaction (pp.1–8). 10.1145/3295598.3314845
    https://doi.org/10.1145/3295598.3314845 [Google Scholar]
  29. Galbraith, J., Sancha, S., Maloney, R., & Hauber, M. E.
    (2007) Alarm responses are maintained during captive rearing in chicks of endangered kaki. Animal Conservation, 10 (1), 103–109. 10.1111/j.1469‑1795.2006.00079.x
    https://doi.org/10.1111/j.1469-1795.2006.00079.x [Google Scholar]
  30. Gotlieb, G.
    (1971) Development of species identification in birds: An inquiry into the prenatal determinants of perception. University of Chicago Press.
    [Google Scholar]
  31. Gottlieb, G.
    (1965) Prenatal auditory sensitivity in chickens and ducks. Science, 147 (3665), 15961598. 10.1126/science.147.3665.1596
    https://doi.org/10.1126/science.147.3665.1596 [Google Scholar]
  32. Gupfinger, R., & Kaltenbrunner, M.
    (2018) Animals make music: A look at non-human musical expression. Multimodal Technologies and Interaction, 2 (3), 51. 10.3390/mti2030051
    https://doi.org/10.3390/mti2030051 [Google Scholar]
  33. Gvaryahu, G., Cunningham, D., & Van Tienhoven, A.
    (1989) Filial imprinting, environmental enrichment, and music application effects on behavior and performance of meat strain chicks. International Journal of Poultry Science, 68 (2), 211–217. 10.3382/ps.0680211
    https://doi.org/10.3382/ps.0680211 [Google Scholar]
  34. Hediger, H.
    (2013) Wild animals in captivity. Butterworth-Heinemann.
    [Google Scholar]
  35. Herzing, D. L.
    (2016) Interfaces and keyboards for human-dolphin communication: What have we learned. Animal Behavior and Cognition, 3 (4), 243–254. 10.12966/abc.04.11.2016
    https://doi.org/10.12966/abc.04.11.2016 [Google Scholar]
  36. Hohenstaufen, F. I. O., Wood, C. A., & Fyfe, F. M.
    (1943) The art of falconry: being the de arte venandi cum avibus of frederick ii of hohenstaufen.
    [Google Scholar]
  37. Hornaday, W. T.
    (1899) Preface to taxidermy and zoological collecting, seventh edition. C. Scribner’s Sons.
    [Google Scholar]
  38. Hosey, G.
    (2008) A preliminary model of human-animal relationships in the zoo. Applied Animal Behaviour Science, 109 (2–4), 105–127. 10.1016/j.applanim.2007.04.013
    https://doi.org/10.1016/j.applanim.2007.04.013 [Google Scholar]
  39. Hosey, G., & Melfi, V.
    (2015) Are we ignoring neutral and negative human-animal relationships in zoos?Zoo Biology, 34 (1), 1–8. 10.1002/zoo.21182
    https://doi.org/10.1002/zoo.21182 [Google Scholar]
  40. Houlihan, P. F., & Goodman, S. M.
    (1988) The birds of ancient Egypt. American University in Cairo Press.
    [Google Scholar]
  41. Hoy, J. M., Murray, P. J., & Tribe, A.
    (2010) Thirty years later: enrichment practices for captive mammals. Zoo Biology, 29(3), 303–316. 10.1002/zoo.20254
    https://doi.org/10.1002/zoo.20254 [Google Scholar]
  42. Johnson, M., de Soto, N. A., & Madsen, P. T.
    (2009) Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Marine Ecology Progress Series, 3951, 55–73. 10.3354/meps08255
    https://doi.org/10.3354/meps08255 [Google Scholar]
  43. Jones, R.
    (2004) Environmental enrichment: the need for practical strategies to improve poultry welfare. InWelfare of the laying hen. Papers from the 27th Poultry Science Symposium of the World’s Poultry Science Association (UK Branch) (pp.215–225). 10.1079/9780851998138.0215
    https://doi.org/10.1079/9780851998138.0215 [Google Scholar]
  44. Kaplan, G.,
    (2009) Animals and music: between cultural definitions and sensory evidence. Σημειωτκή–Sign Systems Studies, 37(3–4), 423–453. 10.12697/SSS.2009.37.3‑4.03
    https://doi.org/10.12697/SSS.2009.37.3-4.03 [Google Scholar]
  45. Katsis, A. C., Davies, M. H., Buchanan, K. L., Kleindorfer, S., Hauber, M. E., & Mariette, M. M.
    (2018) Prenatal exposure to incubation calls affects song learning in the zebra finch. Scientific Reports, 8 (1), 1–10. 10.1038/s41598‑018‑33301‑5
    https://doi.org/10.1038/s41598-018-33301-5 [Google Scholar]
  46. Keeling, C.
    (2001) Zoological gardens of Great Britain. Zoo & Aquarium History, 49–74.
    [Google Scholar]
  47. Khan, N., & Wascher, C. A.
    (2021) Considering generalizability: A lesson from auditory enrichment research on zoo animals. Animal Behavior and Cognition, 8 (2), 251–262. 10.26451/abc.08.02.12.2021
    https://doi.org/10.26451/abc.08.02.12.2021 [Google Scholar]
  48. Kight, C. R., & Swaddle, J. P.
    (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecology Letters, 14 (10), 1052–1061. 10.1111/j.1461‑0248.2011.01664.x
    https://doi.org/10.1111/j.1461-0248.2011.01664.x [Google Scholar]
  49. Kim-McCormack, N. N., Smith, C. L., & Behie, A. M.
    (2016) Is interactive technology a relevant and effective enrichment for captive great apes?Applied Animal Behaviour Science, 1851, 1–8. 10.1016/j.applanim.2016.09.012
    https://doi.org/10.1016/j.applanim.2016.09.012 [Google Scholar]
  50. King’Ori, A.,
    (2011) Review of the factors that influence egg fertility and hatchability in poultry. International Journal of Poultry Science, 10 (6), 483–492. 10.3923/ijps.2011.483.492
    https://doi.org/10.3923/ijps.2011.483.492 [Google Scholar]
  51. Kisling, V. N.
    (2000) Zoo and aquarium history: Ancient animal collections to zoological gardens. CRC press. 10.1201/9781420039245
    https://doi.org/10.1201/9781420039245 [Google Scholar]
  52. Kleiman, D., & Peters, G.
    (1990) Auditory communication in the giant panda: motivation and function. InProceedings of the Second International Symposium on the Giant Panda. Tokyo Zoological Park Society.
    [Google Scholar]
  53. Kleinberger, R.
    (2020) Vocal connection rethinking the voice as a medium for personal, interpersonal, and interspecies understanding (PhD dissertation). Massachusetts Institute of Technology.
  54. Kleinberger, R., Baker, J., & Miller, G.
    (2019) Initial observation of human-bird vocal interactions in a zoological setting. Peer J Preprints. 10.7287/peerj.preprints.27927v1
    https://doi.org/10.7287/peerj.preprints.27927v1 [Google Scholar]
  55. Kleinberger, R., Cunha, J., Vemuri, M., & Hirskyj-Douglas, I.
    (2023) Birds of a feather video-flock together: Agency-based parrot-to- parrot video-calling system for interspecies ethical enrichment. InProceedings of the 2023 CHI Conference on Human Factors in Computing Systems (p.1–23).
    [Google Scholar]
  56. Kleinberger, R., Harrington, A. H., Yu, L., Van Troyer, A., Su, D., Baker, J. M., & Miller, G.
    (2020) Interspecies interactions mediated by technology: an avian case study at the zoo. InProceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp.1–12). 10.1145/3313831.3376858
    https://doi.org/10.1145/3313831.3376858 [Google Scholar]
  57. Kleinberger, R., Vemuri, M., Sands, J., Sareen, H., & Baker, J.
    (2022) Tamagophone: a framework for augmenting artificial incubators to enable vocal interaction between bird parents and eggs. InProceedings of the Ninth International Conference on Animal-Computer Interaction. 10.1145/3565995.3566036
    https://doi.org/10.1145/3565995.3566036 [Google Scholar]
  58. Ko, D., Kwon, D., Kim, E., & Lee, W.
    (2018) Bubbletalk: enriching experience with fish by supporting human behavior. InProceedings of the 2018 Designing Interactive Systems Conference (pp.919-930). 10.1145/3196709.3196720
    https://doi.org/10.1145/3196709.3196720 [Google Scholar]
  59. Kreger, M. D., & Mench, J. A.
    (1995) Visitor—animal interactions at the zoo. Anthrozoös, 8(3), 143–158. 10.2752/089279395787156301
    https://doi.org/10.2752/089279395787156301 [Google Scholar]
  60. Lábaque, M., Navarro, J., & Martella, M.
    (2003) Microbial contamination of artificially incubated greater rhea (Rhea americana) eggs. British Poultry Science, 44 (3), 355–358. 10.1080/00071660310005198319
    https://doi.org/10.1080/00071660310005198319 [Google Scholar]
  61. Larsen, M. J., Sherwen, S. L., & Rault, J.-L.
    (2014) Number of nearby visitors and noise level affect vigilance in captive koalas. Applied Animal Behaviour Science, 1541, 76–82. 10.1016/j.applanim.2014.02.005
    https://doi.org/10.1016/j.applanim.2014.02.005 [Google Scholar]
  62. Lee, S. P., Cheok, A. D., James, T. K. S., Debra, G. P. L., Jie, C. W., Chuang, W., & Farbiz, F.
    (2006) A mobile pet wearable computer and mixed reality system for human-poultry interaction through the internet. Personal and Ubiquitous Computing, 10 (5), 301–317. 10.1007/s00779‑005‑0051‑6
    https://doi.org/10.1007/s00779-005-0051-6 [Google Scholar]
  63. Lindholm, J.
    (2013) ch.4: Zoo history. InM. Irwin (Ed.), Zookeeping: An introduction to the science and technology (pp.31–42). Univrsity of Chicago Press.
    [Google Scholar]
  64. Lindholm III, J. H.
    (1995) Lories may be hazardous (a cautionary tale). AFA Watchbird, 22 (5), 22–27.
    [Google Scholar]
  65. Loisel, G. A. A.
    (1912) Histoire des ménageries de l’antiquité à nos jours (Vol.21). O. Doin et fils. 10.5962/bhl.title.22904
    https://doi.org/10.5962/bhl.title.22904 [Google Scholar]
  66. Lorenz, K.
    (1981) The foundations of ethology. Springer verlag. 10.1007/978‑3‑7091‑3671‑3
    https://doi.org/10.1007/978-3-7091-3671-3 [Google Scholar]
  67. Margulis, S. W., Hoyos, C., & Anderson, M.
    (2003) Effect of felid activity on zoo visitor interest. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 22 (6), 587–599. 10.1002/zoo.10115
    https://doi.org/10.1002/zoo.10115 [Google Scholar]
  68. Mariette, M. M., & Buchanan, K. L.
    (2016) Prenatal acoustic communication programs offspring for high posthatching temperatures in a songbird. Science, 353 (6301), 812–814. 10.1126/science.aaf7049
    https://doi.org/10.1126/science.aaf7049 [Google Scholar]
  69. Markowitz, H., & Aday, C.
    (1998) Power for captive animals. Second nature: Environmental enrichment for captive animals, 47–58.
    [Google Scholar]
  70. Markowitz, H., Aday, C., & Gavazzi, A.
    (1995) Effectiveness of acoustic “prey”: Environmental enrichment for a captive African leopard (Panthera pardus). Zoo Biology, 14 (4), 371–379. 10.1002/zoo.1430140408
    https://doi.org/10.1002/zoo.1430140408 [Google Scholar]
  71. Markowitz, H., & Woodworth, G.
    (1978) Experimental analysis and control of group behavior. Behavior of Captive Wild Animals, 107–131.
    [Google Scholar]
  72. McComb, K., Moss, C., Sayialel, S., & Baker, L.
    (2000) Unusually extensive networks of vocal recognition in African elephants. Animal behaviour, 59 (6), 1103–1109. 10.1006/anbe.2000.1406
    https://doi.org/10.1006/anbe.2000.1406 [Google Scholar]
  73. Mellen, J., & Sevenich MacPhee, M.
    (2001) Philosophy of environmental enrichment: past, present, and future. Zoo Biology, 20 (3), 211–226. 10.1002/zoo.1021
    https://doi.org/10.1002/zoo.1021 [Google Scholar]
  74. Nagel, T.
    (1974) What is it like to be a bat?The Philosophical Review, 83 (4), 435–450. 10.2307/2183914
    https://doi.org/10.2307/2183914 [Google Scholar]
  75. Nielsen, M.
    (2009) The imitative behaviour of children and chimpanzees: A window on the transmission of cultural traditions. Revue de Primatologie (1). 10.4000/primatologie.254
    https://doi.org/10.4000/primatologie.254 [Google Scholar]
  76. Nimon, A., & Dalziel, F.
    (1992) Cross-species interaction and communication: a study method applied to captive siamang (Hylobates syndactylus) and long-billed corella (Cacatua tenuirostris) contacts with humans. Applied Animal Behaviour Science, 33 (2–3), 261–272. 10.1016/S0168‑1591(05)80013‑9
    https://doi.org/10.1016/S0168-1591(05)80013-9 [Google Scholar]
  77. Nowacek, D. P.
    (2005) Acoustic ecology of foraging bottlenose dolphins (Tursiops truncatus), habitatspecific use of three sound types. Marine Mammal Science, 21 (4), 587–602. 10.1111/j.1748‑7692.2005.tb01253.x
    https://doi.org/10.1111/j.1748-7692.2005.tb01253.x [Google Scholar]
  78. Noz, F., & An, J.
    (2011) Cat cat revolution: an interspecies gaming experience. InProceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.2661–2664). 10.1145/1978942.1979331
    https://doi.org/10.1145/1978942.1979331 [Google Scholar]
  79. Ogden, J. J., Lindburg, D. G., & Maple, T. L.
    (1993) The effects of ecologically-relevant sounds on zoo visitors. Curator: The Museum Journal, 36 (2), 147–156. 10.1111/j.2151‑6952.1993.tb00787.x
    https://doi.org/10.1111/j.2151-6952.1993.tb00787.x [Google Scholar]
  80. Owen, C.
    (2004) Do visitors affect the asian short-clawed otter in a captive environment. InProceedings of the 6th Annual Symposium on Zoo Research-BIAZA (pp.202–211).
    [Google Scholar]
  81. Owen, M. A., Czekala, N. M., Swaisgood, R. R., Steinman, K., & Lindburg, D. G.
    (2005) Seasonal and diurnal dynamics of glucocorticoids and behavior in giant pandas. Ursus, 208–221. 10.2192/1537‑6176(2005)016[0208:SADDOG]2.0.CO;2
    https://doi.org/10.2192/1537-6176(2005)016[0208:SADDOG]2.0.CO;2 [Google Scholar]
  82. Owen, M. A., Swaisgood, R. R., Zhou, X., & Blumstein, D. T.
    (2016) Signalling behaviour is influenced by transient social context in a spontaneously ovulating mammal. Animal Behaviour, 1111, 157–165. 10.1016/j.anbehav.2015.10.008
    https://doi.org/10.1016/j.anbehav.2015.10.008 [Google Scholar]
  83. Pack, A. A.
    (2018) Language research: dolphins. Encyclopedia of animal cognition and behavior. Springer, Berlin, 1–10. 10.1007/978‑3‑319‑47829‑6_1628‑1
    https://doi.org/10.1007/978-3-319-47829-6_1628-1 [Google Scholar]
  84. Partan, S., & Marler, P.
    (2002) The umwelt and its relevance to animal communication: introduction to special issue. Journal of Comparative Psychology, 116 (2), 116. 10.1037/0735‑7036.116.2.116
    https://doi.org/10.1037/0735-7036.116.2.116 [Google Scholar]
  85. Patrick, P. G., & Tunnicliffe, S. D.
    (2013) The zoo voice: zoo education and learning. InZoo talk (pp.137–154). Springer. 10.1007/978‑94‑007‑4863‑7_9
    https://doi.org/10.1007/978-94-007-4863-7_9 [Google Scholar]
  86. Persson, T., Sauciuc, G.-A., & Madsen, E. A.
    (2018) Spontaneous cross-species imitation in interactions between chimpanzees and zoo visitors. Primates, 59 (1), 19–29. 10.1007/s10329‑017‑0624‑9
    https://doi.org/10.1007/s10329-017-0624-9 [Google Scholar]
  87. Pessato, A., McKechnie, A. E., Buchanan, K. L., & Mariette, M. M.
    (2020) Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird. Scientific Reports, 10 (1), 1–11. 10.1038/s41598‑020‑75909‑6
    https://doi.org/10.1038/s41598-020-75909-6 [Google Scholar]
  88. Pifarré, M., Valdez, R., González-Rebeles, C., Vazquez, C., Romano, M., & Galindo, F.
    (2012) The effect of zoo visitors on the behaviour and faecal cortisol of the mexican wolf (Canis lupus baileyi). Applied Animal Behaviour Science, 136 (1), 57–62. 10.1016/j.applanim.2011.11.015
    https://doi.org/10.1016/j.applanim.2011.11.015 [Google Scholar]
  89. Piitulainen, R., & Hirskyj-Douglas, I.
    (2020) Music for monkeys: Building methods to design with white-faced sakis for animal-driven audio enrichment devices. Animals, 10 (10), 1768. 10.3390/ani10101768
    https://doi.org/10.3390/ani10101768 [Google Scholar]
  90. Pijanowski, B. C.,
    (2011) Soundscape ecology: the science of sound in the landscape. BioScience, 61 (3), 203–216. 10.1525/bio.2011.61.3.6
    https://doi.org/10.1525/bio.2011.61.3.6 [Google Scholar]
  91. Pons, P.,
    (2016) Sound to your objects: a novel design approach to evaluate orangutans’ interest in sound-based stimuli. InProceedings of the Sixth International Conference on Animal-Computer Interaction. 10.1145/2995257.2995383
    https://doi.org/10.1145/2995257.2995383 [Google Scholar]
  92. Quadros, S., Goulart, V. D., Passos, L., Vecci, M. A., & Young, R. J.
    (2014) Zoo visitor effect on mammal behaviour: Does noise matter?Applied Animal Behaviour Science, 1561, 78–84. 10.1016/j.applanim.2014.04.002
    https://doi.org/10.1016/j.applanim.2014.04.002 [Google Scholar]
  93. Reiss, D., & McCowan, B.
    (1993) Spontaneous vocal mimicry and production by bottlenose dolphins (Tursiops truncatus): evidence for vocal learning. Journal of Comparative Psychology, 107 (3), 301–312. 10.1037/0735‑7036.107.3.301
    https://doi.org/10.1037/0735-7036.107.3.301 [Google Scholar]
  94. Rickard, N. S., Toukhsati, S. R., & Field, S. E.
    (2005) The effect of music on cognitive performance: Insight from neurobiological and animal studies. Behavioral and Cognitive Neuroscience Reviews, 4 (4), 235–261. 10.1177/1534582305285869
    https://doi.org/10.1177/1534582305285869 [Google Scholar]
  95. Ritvo, S. E.
    (2013) Music preference and discrimination in three Sumatran orangutans (PhD dissertation). York University.
  96. Rivera, M., Cealie, M., Hauber, M. E., Kleindorfer, S., & Liu, W.-C.
    (2019) Neural activation in response to conspecific songs in zebra finch (Taeniopygia guttata) embryos and nestlings. Neuroreport, 30(3), 217–221. 10.1097/WNR.0000000000001187
    https://doi.org/10.1097/WNR.0000000000001187 [Google Scholar]
  97. Rose, P., Badman-King, A., Hurn, S., & Rice, T.
    (2021) Visitor presence and a changing soundscape, alongside environmental parameters, can predict enclosure usage in captive flamingos. Zoo Biology, 40 (5), 363–375. 10.1002/zoo.21615
    https://doi.org/10.1002/zoo.21615 [Google Scholar]
  98. Rychen, J., Semoroz, J., Eckerle, A., Hahnloser, R. H., & Kleinberger, R.
    (2022) Full-duplex acoustic interaction system for cognitive experiments with cetaceans. bioRxiv. 10.1101/2022.05.27.493738
    https://doi.org/10.1101/2022.05.27.493738 [Google Scholar]
  99. Salguero-Gómez, R.,
    (2016) Comadre: a global data base of animal demography. Journal of Animal Ecology, 85 (2), 371–384. 10.1111/1365‑2656.12482
    https://doi.org/10.1111/1365-2656.12482 [Google Scholar]
  100. Savran, G.
    (1994) Beastly speech: intertextuality, balaam’s ass and the garden of eden. Journal for the Study of the Old Testament, 19 (64), 33–55. 10.1177/030908929401906404
    https://doi.org/10.1177/030908929401906404 [Google Scholar]
  101. Schaller, G. B.,
    (1990) The giant pandas of wolong. The Quarterly Review of Biology, 60 (4), 524—525.
    [Google Scholar]
  102. Scheel, B.
    (2018) Designing digital enrichment for orangutans. InProceedings of the Fifth International Conference on Animal-Computer Interaction (pp.1–11). 10.1145/3295598.3295603
    https://doi.org/10.1145/3295598.3295603 [Google Scholar]
  103. Schüttler, E., Klenke, R., McGehee, S., Rozzi, R., & Jax, K.
    (2009) Vulnerability of ground-nesting waterbirds to predation by invasive American mink in the Cape Horn biosphere reserve, Chile. Biological Conservation, 142 (7), 1450–1460. 10.1016/j.biocon.2009.02.013
    https://doi.org/10.1016/j.biocon.2009.02.013 [Google Scholar]
  104. Shepherdson, D. J.
    (2003) Environmental enrichment: past, present and future. International Zoo Yearbook, 38 (1), 118–124. 10.1111/j.1748‑1090.2003.tb02071.x
    https://doi.org/10.1111/j.1748-1090.2003.tb02071.x [Google Scholar]
  105. Shepherdson, D. J., Bemment, N., Carman, M., & Reynolds, S.
    (1989) Auditory enrichment for lar gibbons hylobates lar at London zoo. International Zoo Yearbook, 28 (1), 256–260. 10.1111/j.1748‑1090.1989.tb03294.x
    https://doi.org/10.1111/j.1748-1090.1989.tb03294.x [Google Scholar]
  106. Shepherdson, D. J., Mellen, J. D., & Hutchins, M.
    (1999) Second nature: Environmental enrichment for captive animals. Smithsonian Institution.
    [Google Scholar]
  107. Slabbekoorn, H., & Smith, T. B.
    (2002) Bird song, ecology and speciation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357 (1420), 493–503. 10.1098/rstb.2001.1056
    https://doi.org/10.1098/rstb.2001.1056 [Google Scholar]
  108. Špinka, M., Wemelsfelder, F.,
    (2011) Environmental challenge and animal agency. Animal Welfare, 27–43. 10.1079/9781845936594.0027
    https://doi.org/10.1079/9781845936594.0027 [Google Scholar]
  109. Stewart, A.
    (2019) second livestock. Retrieved2019-09-19, fromwww.theaustinstewart.com/secondlivestock.html
    [Google Scholar]
  110. Suddendorf, T., & Whiten, A.
    (2001) Mental evolution and development: evidence for secondary representation in children, great apes, and other animals. Psychological Bulletin, 127 (5), 629. 10.1037/0033‑2909.127.5.629
    https://doi.org/10.1037/0033-2909.127.5.629 [Google Scholar]
  111. Sueur, J., Krause, B., & Farina, A.
    (2019) Climate change is breaking earth’s beat. Trends in Ecology & Evolution, 34 (11), 971–973. 10.1016/j.tree.2019.07.014
    https://doi.org/10.1016/j.tree.2019.07.014 [Google Scholar]
  112. Tanszek, E.
    (2019) The family dog project. Retrieved fromhttps://familydogproject.elte.hu
    [Google Scholar]
  113. Tinbergen, N.
    (1972) The animal in its world: Explorations of an ethologist, 1932–1972 (Vol.841). Harvard University Press.
    [Google Scholar]
  114. Toynbee, J. M.
    (1996) Animals in roman life and art. Johns Hopkins University Press.
    [Google Scholar]
  115. Tromborg, C., Mitchell, G., Markowitz, H., & Morgan, K.
    (1993) Sound and its significance for captive primates. American Journal of Primatology, 301, 352–353.
    [Google Scholar]
  116. Tuia, D.,
    (2022) Perspectives in machine learning for wildlife conservation. Nature Communications, 13 (1), 1–15. 10.1038/s41467‑022‑27980‑y
    https://doi.org/10.1038/s41467-022-27980-y [Google Scholar]
  117. Valletta, J. J., Torney, C., Kings, M., Thornton, A., & Madden, J.
    (2017) Applications of machine learning in animal behaviour studies. Animal Behaviour, 1241, 203–220. 10.1016/j.anbehav.2016.12.005
    https://doi.org/10.1016/j.anbehav.2016.12.005 [Google Scholar]
  118. Vevers, G.
    (1976) London’s zoo: An anthology to celebrate 150 years of the zoological society of london, with its zoos at regent’s park in london and whipsnade in bedfordshire. Bodley Head.
    [Google Scholar]
  119. Videan, E. N., Fritz, J., Howell, S., & Murphy, J.
    (2007) Effects of two types and two genre of music on social behavior in captive chimpanzees (Pan troglodytes). Journal of the American Association for Laboratory Animal Science, 46 (1), 66–70.
    [Google Scholar]
  120. von Uexküll, J.
    (1992) A stroll through the worlds of animals and men: a picture book of invisible worlds. InInstinctive behavior: the development of a modern concept (p. ed. trans.C. H. Schiller. International Universities Press). 10.1515/semi.1992.89.4.319
    https://doi.org/10.1515/semi.1992.89.4.319 [Google Scholar]
  121. Wallis, L. J., Range, F., Kubinyi, E., Chapagain, D., Serra, J., & Huber, L.
    (2017) Utilising dogcomputer interactions to provide mental stimulation in dogs especially during ageing. InProceedings of the fourth international conference on animal-computer interaction (pp.1–12).
    [Google Scholar]
  122. Ward, S. J., & Melfi, V.
    (2015) Keeper-animal interactions: Differences between the behaviour of zoo animals affect stockmanship. PloS One, 101 (e0140237), 1–10. 10.1371/journal.pone.0140237
    https://doi.org/10.1371/journal.pone.0140237 [Google Scholar]
  123. Webber, S.,
    (2017) Kinecting with orangutans: zoo visitors’ empathetic responses to animals? use of interactive technology. InCHI Conference on Human Factors in Computing Systems. 10.1145/3025453.3025729
    https://doi.org/10.1145/3025453.3025729 [Google Scholar]
  124. Wells, D. L.
    (2009a) The effects of animals on human health and well-being. Journal of Social Issues, 65 (3), 523–543. 10.1111/j.1540‑4560.2009.01612.x
    https://doi.org/10.1111/j.1540-4560.2009.01612.x [Google Scholar]
  125. (2009b) Sensory stimulation as environmental enrichment for captive animals: A review. Applied Animal Behaviour Science, 118 (1–2), 1–11. 10.1016/j.applanim.2009.01.002
    https://doi.org/10.1016/j.applanim.2009.01.002 [Google Scholar]
  126. Wells, D. L., Graham, L., & Hepper, P. G.
    (2002) The influence of auditory stimulation on the behaviour of dogs housed in a rescue shelter. Animal Welfare, 11 (4), 385–393. 10.1017/S0962728600025112
    https://doi.org/10.1017/S0962728600025112 [Google Scholar]
  127. Wells, D. L., & Irwin, R. M.
    (2008) Auditory stimulation as enrichment for zoo-housed asian elephants (Elephas maximus). Animal Welfare, 17 (4), 335–340. 10.1017/S0962728600027822
    https://doi.org/10.1017/S0962728600027822 [Google Scholar]
  128. Westerlaken, M., & Gualeni, S.
    (2014) Felino: The philosophical practice of making an interspecies videogame. InThe Philosophy of Computer Games Conference (p.1–10).
    [Google Scholar]
  129. Williams, E.,
    (2022) The impact of covid-19 zoo closures on behavioural and physiological parameters of welfare in primates. Animals, 12 (13), 1622. 10.3390/ani12131622
    https://doi.org/10.3390/ani12131622 [Google Scholar]
  130. Williams, I., Hoppitt, W., & Grant, R.
    (2017) The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Psittaciformes); implications for welfare. Applied Animal Behaviour Science, 1861, 85–92. 10.1016/j.applanim.2016.10.013
    https://doi.org/10.1016/j.applanim.2016.10.013 [Google Scholar]
  131. Yan, X.,
    (2019) Acoustic recordings provide detailed information regarding the behavior of cryptic wildlife to support conservation translocations. Scientific Reports, 9 (1), 1–11. 10.1038/s41598‑019‑41455‑z
    https://doi.org/10.1038/s41598-019-41455-z [Google Scholar]
  132. Yanofsky, R., & Markowitz, H.
    (1978) Changes in general behavior of two mandrills (Papio sphinx) concomitant with behavioral testing in the zoo. The Psychological Record, 28 (3), 369–373. 10.1007/BF03394548
    https://doi.org/10.1007/BF03394548 [Google Scholar]
  133. Yerkes, R. M.
    (1927) The mind of a gorilla. Clark University.
    [Google Scholar]
  134. Zhang, J., Hull, V., Huang, J., Zhou, S., Xu, W., Yang, H.,
    (2015) Activity patterns of the giant panda (ailuropoda melanoleuca). Journal of Mammalogy, 96 (6), 1116–1127. 10.1093/jmammal/gyv118
    https://doi.org/10.1093/jmammal/gyv118 [Google Scholar]
  135. Zoolingua
    Zoolingua (2018) Zoolingua. Retrieved2018-03-02, fromzoolingua.com/
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/is.22044.kle
Loading
/content/journals/10.1075/is.22044.kle
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error