1887
Volume 25, Issue 3
  • ISSN 1572-0373
  • E-ISSN: 1572-0381
USD
Buy:$35.00 + Taxes

Abstract

Abstract

We introduce a vocalization-based behavioral coding protocol, which is designed to assess engagement in in-the-wild child-robot interactions. We evaluate inter-coder agreement between 3–4 coders using the protocol in two training data sets and two experimental data sets in two languages (English and Japanese), both assessing the results as they are, and by grouping behavior codes into broader categories. Using the results of the coding, we analyze segments of the four experimental interactions. We find that this methodology has merit for vocalization-based behavioral analysis, especially when used to build a consensus between multiple behavioral coders to account for ambiguity. It still has several limitations, including a generally low intercoder agreement rate even when the controls are in agreement, which we attribute to the ambiguity of voice recordings of group interactions, meaning that the use of multiple coders to build consensus is not an option but a necessity to eliminate clearly subjective results.

Loading

Article metrics loading...

/content/journals/10.1075/is.24004.ind
2025-06-27
2025-07-19
Loading full text...

Full text loading...

References

  1. Altmann, J.
    (1973) Observational study of behavior: sampling methods. Behaviour, 49(3):227–267. 10.1163/156853974X00534
    https://doi.org/10.1163/156853974X00534 [Google Scholar]
  2. Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., and Tanaka, F.
    (2018) Social robots for education: A review. Science Robotics, 3(21):1–9. 10.1126/scirobotics.aat5954
    https://doi.org/10.1126/scirobotics.aat5954 [Google Scholar]
  3. Boyd, R. L. and Schwartz, H. A.
    (2021) Natural Language Analysis and the Psychology of Verbal Behavior: The Past, Present, and Future States of the Field. Journal of Language and Social Psychology, 40(1):21–41. 10.1177/0261927X20967028
    https://doi.org/10.1177/0261927X20967028 [Google Scholar]
  4. Chorney, J. M. L., McMurtry, C. M., Chambers, C. T., and Bakeman, R.
    (2015) Developing and modifying behavioral coding schemes in pediatric psychology: A practical guide. Journal of Pediatric Psychology, 40(1):154–164. 10.1093/jpepsy/jsu099
    https://doi.org/10.1093/jpepsy/jsu099 [Google Scholar]
  5. Coronado, E., Indurkhya, X., and Venture, G.
    (2019) Robots meet children, development of semi-autonomous control systems for children-robot interaction in the wild. In2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), pages360–365. 10.1109/ICARM.2019.8833751
    https://doi.org/10.1109/ICARM.2019.8833751 [Google Scholar]
  6. Diaz-Boladeras, M., Paillacho, D., Angulo, C., Torres, O., Gonzalez-Dieguez, J., and Albo-Canals, J.
    (2015) Evaluating Group-Robot Interaction in Crowded Public Spaces: A Week-Long Exploratory Study in the Wild with a Humanoid Robot Guiding Visitors Through a Science Museum. International Journal of Humanoid Robotics, 12(4). 10.1142/S021984361550022X
    https://doi.org/10.1142/S021984361550022X [Google Scholar]
  7. Flynn, E.
    (2008) Investigating children as cultural magnets: Do young children transmit redundant information along diffusion chains?Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1509):3541–3551. 10.1098/rstb.2008.0136
    https://doi.org/10.1098/rstb.2008.0136 [Google Scholar]
  8. Giuliani, M., Mirnig, N., Stollnberger, G., Stadler, S., Buchner, R., and Tscheligi, M.
    (2015) Systematic analysis of video data from different human-robot interaction studies: a categorization of social signals during error situations. Frontiers in Psychology, 61(July). 10.3389/fpsyg.2015.00931
    https://doi.org/10.3389/fpsyg.2015.00931 [Google Scholar]
  9. Guérin, N. A., Gabriels, R. L., Germone, M. M., Sabrina, S. E., Traynor, A., Thomas, K. M., McKenzie, S. J., Slaughter, V., and O Haire, M. E.
    (2018) Reliability and validity assessment of the Observation of Human-Animal Interaction for Research (OHAIRE) behavior coding tool. Frontiers in Veterinary Science, 5(NOV):1–15. 10.3389/fvets.2018.00268
    https://doi.org/10.3389/fvets.2018.00268 [Google Scholar]
  10. Herbrecht, E., Lazari, O., Notter, M., Schmeck, K., and Spiegel, R.
    (2019) Process research in early intensive intervention in autism spectrum disorder: Sensitivity to change of the autism behavior coding system. Autism Research, 12(12):1817–1828. 10.1002/aur.2188
    https://doi.org/10.1002/aur.2188 [Google Scholar]
  11. Indurkhya, X. and Venture, G.
    (2024) Lessons in Developing a Behavioral Coding Protocol to Analyze In-the-Wild Child-Robot Events and Experiments. Electronics, 131:1175. 10.3390/electronics13071175
    https://doi.org/10.3390/electronics13071175 [Google Scholar]
  12. Jung, S. E. and Won, E. S.
    (2018) Systematic review of research trends in robotics education for young children. Sustainability (Switzerland), 10(4):1–24. 10.3390/su10040905
    https://doi.org/10.3390/su10040905 [Google Scholar]
  13. Kanda, T., Hirano, T., Eaton, D., and Ishiguro, H.
    (2004) Interactive robots as social partners and peer tutors for children: A field trial. Human-Computer Interaction, 19(1–2):61–84. 10.1207/s15327051hci1901&2_4
    https://doi.org/10.1207/s15327051hci1901&2_4 [Google Scholar]
  14. Komatsubara, T., Shiomi, M., Kanda, T., Ishiguro, H., and Hagita, N.
    (2014) Can a social robot help children’s understanding of science in classrooms?HAI 2014 — Proceedings of the 2nd International Conference on Human-Agent Interaction, pages83–90. 10.1145/2658861.2658881
    https://doi.org/10.1145/2658861.2658881 [Google Scholar]
  15. Krägeloh, C. U., Bharatharaj, J., Kutty, S. K. S., Nirmala, P. R., and Huang, L.
    (2019) Questionnaires to measure acceptability of social robots: A critical review. Robotics, 8(4):1–14. 10.3390/robotics8040088
    https://doi.org/10.3390/robotics8040088 [Google Scholar]
  16. Lecciso, F., Levante, A., Fabio, R. A., Capr, T., Leo, M., Carcagn, P., Distante, C., Mazzeo, P. L., Spagnolo, P., and Petrocchi, S.
    (2021) Emotional Expression in Children With ASD: A Pre-Study on a Two-Group Pre-Post-Test Design Comparing Robot-Based and Computer-Based Training. Frontiers in Psychology, 12(July). 10.3389/fpsyg.2021.678052
    https://doi.org/10.3389/fpsyg.2021.678052 [Google Scholar]
  17. Leo, M., Carcagn, P., Distante, C., Spagnolo, P., Mazzeo, P. L., Rosato, A. C., Petrocchi, S., Pellegrino, C., Levante, A., Lumè, F. D., and Lecciso, F.
    (2018) Computational assessment of facial expression production in ASD children. Sensors (Switzerland), 18(11):1–25. 10.3390/s18113993
    https://doi.org/10.3390/s18113993 [Google Scholar]
  18. Maj, K., Sawicki, K., and Samson, K.
    (2023) Ready or Not? Examining Acceptance and Fears of Robots in the Labor Market: a Survey of a Polish Sample. Annals of Psychology, 26(4):331–351.
    [Google Scholar]
  19. Mann, J.
    (1999) Behavioral sampling methods for cetaceans: a review and a critque. Marine Mammal Science, 15(1):102–122. 10.1111/j.1748‑7692.1999.tb00784.x
    https://doi.org/10.1111/j.1748-7692.1999.tb00784.x [Google Scholar]
  20. Manzi, F., Peretti, G., Di Dio, C., Cangelosi, A., Itakura, S., Kanda, T., Ishiguro, H., Massaro, D., and Marchetti, A.
    (2020) A robot is not worth another: Exploring children’s mental state attribution to different humanoid robots. Frontiers in Psychology, 11(September):1–12. 10.3389/fpsyg.2020.02011
    https://doi.org/10.3389/fpsyg.2020.02011 [Google Scholar]
  21. Michaelis, J. E., Cagiltay, B., Ibtasar, R., and Mutlu, B.
    (2023) “Off script:” Design opportunities emerging from long-term social robot interactions in-the-wild. InACM/IEEE International Conference on Human-Robot Interaction (HRI ’23), pages378–387. 10.1145/3568162.3576978
    https://doi.org/10.1145/3568162.3576978 [Google Scholar]
  22. Nomura, T., Uratani, T., Kanda, T., Matsumoto, K., Kidokoro, H., Suehiro, Y., and Yamada, S.
    (2015) Why Do Children Abuse Robots?ACM/IEEE International Conference on Human-Robot Interaction, 02–05-Marc:63–64. 10.1145/2701973.2701977
    https://doi.org/10.1145/2701973.2701977 [Google Scholar]
  23. Pesch, M. H. and Lumeng, J. C.
    (2017) Methodological considerations for observational coding of eating and feeding behaviors in children and their families. International Journal of Behavioral Nutrition and Physical Activity, 14(1):1–14. 10.1186/s12966‑017‑0619‑3
    https://doi.org/10.1186/s12966-017-0619-3 [Google Scholar]
  24. Rohlfing, K. J., Altvater-Mackensen, N., Caruana, N., van den Berghe, R., Bruno, B., Tolksdorf, N. F., and Hanulíková, A.
    (2022) Social/dialogical roles of social robots in supporting children’s learning of language and literacy — A review and analysis of innovative roles. Frontiers in Robotics and AI, 9(October):1–15. 10.3389/frobt.2022.971749
    https://doi.org/10.3389/frobt.2022.971749 [Google Scholar]
  25. Ros, R., Nalin, M., Wood, R., Baxter, P., Looije, R., Demiris, Y., Belpaeme, T., Giusti, A., and Pozzi, C.
    (2011) Child-robot interaction in the wild: Advice to the aspiring experimenter. ICMI’11 — Proceedings of the 2011 ACM International Conference on Multimodal Interaction, pages335–342. 10.1145/2070481.2070545
    https://doi.org/10.1145/2070481.2070545 [Google Scholar]
  26. Serholt, S., Pareto, L., Ekström, S., and Ljungblad, S.
    (2020) Trouble and Repair in Child-Robot Interaction: A Study of Complex Interactions With a Robot Tutee in a Primary School Classroom. Frontiers in Robotics and AI, 7(April):1–13. 10.3389/frobt.2020.00046
    https://doi.org/10.3389/frobt.2020.00046 [Google Scholar]
  27. Sienkiewicz, B., Sejnova, G., Gajewski, P., Vavrecka, M., and Indurkhya, B.
    (2023) How language of interaction affects the user perception of a robot. InAli, A. A., editor, Proceedings of the International Conference on Social Robotics (ICSR2023), Dec 3–7, Doha (Qatar), pages308–321, Singapore. Springer Nature.
    [Google Scholar]
  28. Singh, D. K., Kumar, M., Fosch-Villaronga, E., Singh, D., and Shukla, J.
    (2023) Ethical Considerations from Child-Robot Interactions in Under-Resourced Communities. International Journal of Social Robotics, 15(12):2055–2071. 10.1007/s12369‑022‑00882‑1
    https://doi.org/10.1007/s12369-022-00882-1 [Google Scholar]
  29. Tanaka, F., Movellan, J. R., Fortenberry, B., and Aisaka, K.
    (2006) Daily HRI evaluation at a classroom environment: reports from dance interaction experiments. Proc 1st Annual Conf on HumanRobot Interaction HRI, pages3–9. 10.1145/1121241.1121245
    https://doi.org/10.1145/1121241.1121245 [Google Scholar]
  30. Tobis, S., Neumann-Podczaska, A., Kropinska, S., and Suwalska, A.
    (2021) Unraq — a questionnaire for the use of a social robot in care for older persons. A multi-stakeholder study and psychometric properties. International Journal of Environmental Research and Public Health, 18(11). 10.3390/ijerph18116157
    https://doi.org/10.3390/ijerph18116157 [Google Scholar]
  31. Türker, B. B., Buçinca, Z., Erzin, E., Yemez, Y., and Sezgin, M.
    (2017) Analysis of engagement and user experience with a laughter responsive social robot. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2017-Augus:844–848. 10.21437/Interspeech.2017‑1395
    https://doi.org/10.21437/Interspeech.2017-1395 [Google Scholar]
  32. Whiten, A., McGuigan, N., Marshall-Pescini, S., and Hopper, L. M.
    (2009) Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528):2417–2428. 10.1098/rstb.2009.0069
    https://doi.org/10.1098/rstb.2009.0069 [Google Scholar]
  33. Wood, L. J., Dautenhahn, K., Rainer, A., Robins, B., Lehmann, H., and Syrdal, D. S.
    (2013) Robot-Mediated Interviews — How Effective Is a Humanoid Robot as a Tool for Interviewing Young Children?PLoS ONE, 8(3). 10.1371/journal.pone.0059448
    https://doi.org/10.1371/journal.pone.0059448 [Google Scholar]
  34. Wróbel, A., Źróbek, K., Indurkhya, B., Schaper, M. M., Gunia, A., and Zguda, P. M.
    (2023a) Are robots vegan? Unexpected behaviours in child-robot interactions and their design implications. InCHI EA ’23: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing, Systems April 23–28, Hamburg, Germany, pages1–7. 10.1145/3544549.3585666
    https://doi.org/10.1145/3544549.3585666 [Google Scholar]
  35. Wróbel, A., Źróbek, K., Schaper, M.-M., Zguda, P., and Indurkhya, B.
    (2023b) Age-Appropriate Robot Design: In-The-Wild Child-Robot Interaction Studies of Perseverance Styles and Robot’s Unexpected Behavior. InProceedings of the 32nd IEEE International Conference on Robot & Human Interactive Communication (Ro-Man 2023), Aug 28–31, Busan, S. Korea, pages1451–1458. 10.1109/RO‑MAN57019.2023.10309332
    https://doi.org/10.1109/RO-MAN57019.2023.10309332 [Google Scholar]
/content/journals/10.1075/is.24004.ind
Loading
/content/journals/10.1075/is.24004.ind
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error