Volume 9, Issue 1
  • ISSN 2211-4742
  • E-ISSN: 2211-4750
Buy:$35.00 + Taxes



Argumentation mining is a subfield of Computational Linguistics that aims (primarily) at automatically finding arguments and their structural components in natural language text. We provide a short introduction to this field, intended for an audience with a limited computational background. After explaining the subtasks involved in this problem of deriving the structure of arguments, we describe two other applications that are popular in computational linguistics: sentiment analysis and stance detection. From the linguistic viewpoint, they concern the semantics of evaluation in language. In the final part of the paper, we briefly examine the roles that these two tasks play in argumentation mining, both in current practice, and in possible future systems.


Article metrics loading...

Loading full text...

Full text loading...


  1. Afantenos, Stergos, Andreas Peldszus, and Manfred Stede
    2018 “Comparing decoding mechanisms for parsing argumentative structures”. Journal of Argumentation and Computation9(3): 177–192. 10.3233/AAC‑180033
    https://doi.org/10.3233/AAC-180033 [Google Scholar]
  2. Al-Khatib, Khalid, Henning Wachsmuth, Johannes Kiesel, Matthias Hagen and Benno Stein
    2016 “A News Editorial Corpus for Mining Argumentation Strategies”. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: 3433–3443, Osaka, Japan.
    [Google Scholar]
  3. Bar-Haim, Roy, Lilach Edelstein, Charles Jochim, Noam Slonim
    2017 "Improving Claim Stance Classification with Lexical Knowledge Expansion and Context Utilization". Proceedings of the 4th Workshop on Argument Mining, pages32–38, Copenhagen, Denmark. 10.18653/v1/W17‑5104
    https://doi.org/10.18653/v1/W17-5104 [Google Scholar]
  4. Biran, Or and Owen Rambow
    2011 “Identifying Justifications in Written Dialogs by Classifying Text as Argumentative.” Int. J. Semantic Computing5 (2011): 363-381.
    [Google Scholar]
  5. Boltuzic, Filip and Jan Snajder
    2016 *Fill the gap! Analyzing implicit premises between claims from online debates”. Proceedings of the Third Workshop on Argumentation Mining: 124–133, Berlin, Germany. 10.18653/v1/W16‑2815
    https://doi.org/10.18653/v1/W16-2815 [Google Scholar]
  6. Cohen, Robin
    1987 “Analyzing the Structure of Argumentative Discourse”. Computational Linguistics13(1–2):11–24.
    [Google Scholar]
  7. Deng, Lingjia and Janyce Wiebe
    2014 “Sentiment propagation via implicature constraints”. Proceedings of the 14th Conference of the European Chapter of the ACL: 377–385, Gothenburg, Sweden.
    [Google Scholar]
  8. Eckle-Kohler, Judith, Roland Kluge, and Iryna Gurevych
    2015 “On the role of discourse markers for discriminating claims and premises in argumentative discourse”. Proceedings Empirical Methods in Natural Language Processing: 2236–2242, Lisbon, Portugal.
    [Google Scholar]
  9. Falakmasir, Mohammad Hassan, Kevin D. Ashley, Christian D. Schunn, Diane J. Litman
    2014 “Identifying Thesis and Conclusion Statements in Student Essays to Scaffold Peer Review.” In: Trausan-Matu S., Boyer K.E., Crosby M., Panourgia K. (eds) Intelligent Tutoring Systems. ITS 2014. Lecture Notes in Computer Science, vol8474. Springer, Cham. 10.1007/978‑3‑319‑07221‑0_31
    https://doi.org/10.1007/978-3-319-07221-0_31 [Google Scholar]
  10. Fellbaum, Christiane
    (ed) 1998WordNet: An Electronic Lexical Database. Cambridge, Massachusetts: MIT Press. 10.7551/mitpress/7287.001.0001
    https://doi.org/10.7551/mitpress/7287.001.0001 [Google Scholar]
  11. Feng, Vanessa Wei and Graeme Hirst
    2011 “Classifying arguments by scheme”. Proceedings Association for Computational Linguistics: Human Language Technologies: 987–996, Portland, Oregon.
    [Google Scholar]
  12. Freeman, James B.
    2011Argument Structure: Representation and Theory. Amsterdam: Springer. 10.1007/978‑94‑007‑0357‑5
    https://doi.org/10.1007/978-94-007-0357-5 [Google Scholar]
  13. Habernal, Ivan and Iryna Gurevych
    2017 “Argumentation mining in user-generated web discourse”. Computational Linguistics43(1): 125–179. 10.1162/COLI_a_00276
    https://doi.org/10.1162/COLI_a_00276 [Google Scholar]
  14. Hasan, Kazi Saidul and Vincent Ng
    2013 “Stance classification of ideological debates: Data, models, features, and constraints”. Proceedings of the Sixth International Joint Conference on Natural Language Processing: 1348–1356, Nagoya, Japan.
    [Google Scholar]
  15. Klenner, Manfred and Michael Amsler
    2016 “Sentiframes: a resource for verb-centered German sentiment inference”. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC): 2888–2891, Portoroz, Slovenia.
    [Google Scholar]
  16. Lawrence, John and Chris Reed
    2017 “Using Complex Argumentative Interactions to Reconstruct the Argumentative Structure of Large-Scale Debates”. 4th Workshop on Argumentation Mining: 108–117, Copenhagen, Denmark. 10.18653/v1/W17‑5114
    https://doi.org/10.18653/v1/W17-5114 [Google Scholar]
  17. Lippi, Marco and Paolo Torroni
    2016 “Argumentation mining: State of the art and emerging trends”. ACM Transactions on Internet Technology16(2):10:1–10:25. 10.1145/2850417
    https://doi.org/10.1145/2850417 [Google Scholar]
  18. Liu, Bing
    2012Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies. San Rafael (CA): Morgan and Claypool.
    [Google Scholar]
  19. Mohammad, Saif M., Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, Colin Cherry
    2016 “SemEval-2016 Task 6: Detecting Stance in Tweets”. Proceedings of SemEval 2016: 31–41, San Diego, California.
    [Google Scholar]
  20. Palau and Moens
    2009: Mochales Palau, Raquel and Marie-Francine Moens 2009 "Argumentation mining: the detection, classification and structure of arguments in text." Proceedings of the 12th international conference on artificial intelligence and law, pages98–107, New York.
    [Google Scholar]
  21. Peldszus, Andreas and Manfred Stede
    2013 “From argument diagrams to argumentation mining in texts: A survey”. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI)7(1):1–31. 10.4018/jcini.2013010101
    https://doi.org/10.4018/jcini.2013010101 [Google Scholar]
  22. 2016 “An annotated corpus of argumentative microtexts”. InArgumentation and Reasoned Action: Proceedings of 1st European Conference on Argumentation (Vol II), ed. ByDima Mohammed and Marcin Lewiński, 801–816, London: College Publications.
    [Google Scholar]
  23. Persing, Isaac and Vincent Ng
    2015 “Modeling argument strength in student essays”. Proceedings 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers): 543–552, Beijing, China.
    [Google Scholar]
  24. Shnarch, Eyal, Ran Levy, Vikas Raykar, and Noam Slonim
    2017 “Grasp: Rich patterns for argumentation mining”. Proceedings Empirical Methods in Natural Language Processing: 1356–1361, Copenhagen, Denmark.
    [Google Scholar]
  25. Skeppstedt, Maria, Andreas Peldszus, and Manfred Stede
    2018 “More or less controlled elicitation of argumentative text: enlarging a microtext corpus via crowdsourcing”. Proceedings of the 5th Workshop on Argumentation Mining: 155–163. Brussels, Belgium. 10.18653/v1/W18‑5218
    https://doi.org/10.18653/v1/W18-5218 [Google Scholar]
  26. Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng and Christopher Potts
    2013 “Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank”. Proceedings of the Conference on Empirical Methods in Natural Language Processing: 1631–1642, Seattle, WA.
    [Google Scholar]
  27. Somasundaran, Swapna and Janyce Wiebe
    2010 “Recognizing stances in ideological online debates”. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text: 116–124, Los Angeles, CA.
    [Google Scholar]
  28. Stab, Christian and Iryna Gurevych
    2014 “Annotating argument components and relations in persuasive essays”. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: 1501–1510, Dublin, Ireland.
    [Google Scholar]
  29. 2017 “Parsing argumentation structures in persuasive essays”. Computational Linguistics, 43(3):619–660. 10.1162/COLI_a_00295
    https://doi.org/10.1162/COLI_a_00295 [Google Scholar]
  30. Stede, Manfred and Jodi Schneider
    2018Argumentation Mining. San Rafael (CA): Morgan and Claypool. 10.2200/S00883ED1V01Y201811HLT040
    https://doi.org/10.2200/S00883ED1V01Y201811HLT040 [Google Scholar]
  31. Taboada, Maite, Julian Brooke, Milan Tofiloski, Kimberly Voll and Manfred Stede
    2011 “Lexicon-based methods for sentiment analysis”. Computational Linguistics37(2):267–307. 10.1162/COLI_a_00049
    https://doi.org/10.1162/COLI_a_00049 [Google Scholar]
  32. Toulmin, Stephen
    2008 “The layout of arguments”. InReasoning: Studies of human inference and its foundations, ed. byJonathan E. Adler and Lance J. Rips, 652–677, Cambridge: Cambridge University Press. 10.1017/CBO9780511814273.034
    https://doi.org/10.1017/CBO9780511814273.034 [Google Scholar]
  33. Wachsmuth, Henning and Benno Stein
    2017 "A Universal Model for Discourse-Level Argumentation Analysis." In: Special Section of the ACM Transactions on Internet Technology: Argumentation in Social Media, 17 (3): 28:1–28:24, June 2017 10.1145/2957757
    https://doi.org/10.1145/2957757 [Google Scholar]
  34. Wachsmuth, Henning, Martin Potthast, Khalid Al-Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein
    2017a “Building an argument search engine for the web”. Proceedings of the 4th Workshop on Argumentation Mining: 49–59, Copenhagen, Denmark. 10.18653/v1/W17‑5106
    https://doi.org/10.18653/v1/W17-5106 [Google Scholar]
  35. Wachsmuth, Henning, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhakaran, Tim Alberdingk Thijm, Graeme Hirst, and Benno Stein
    2017b “Computational Argumentation Quality Assessment in Natural Language”. Proceedings European Chapter of the Association for Computational Linguistics: 176–187, Valencia, Spain.
    [Google Scholar]
  36. Wojatzki, Michael and Torsten Zesch
    2016 “Stance-based Argument Mining – Modeling Implicit Argumentation Using Stance”. Proceedings of the German Conference on Natural Language Processing KONVENS: 313–322, Bochum, Germany.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error