1887
Volume 14, Issue 2
  • ISSN 2210-2116
  • E-ISSN: 2210-2124

Abstract

This article reviews Computational Approaches to Semantic Change

 

Available under the CC BY 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/jhl.22063.bec
2023-10-30
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/jhl.22063.bec.html?itemId=/content/journals/10.1075/jhl.22063.bec&mimeType=html&fmt=ahah

References

  1. Chen, X., L. Xu, Z. Liu, M. Sun & H. -B. Luan
    2015 Joint Learning of Character and Word Embeddings. Proceedings of IJCAI 2015, 1236–1242. Cambridge, MA: AAAI Press.
    [Google Scholar]
  2. Davies, M.
    2008The Corpus of Contemporary American English (COCA): 560 Million Words, 1990–Present.
    [Google Scholar]
  3. 2012 Expanding Horizons in Historical Linguistics with the 400-Million Word Corpus of Historical American English. Corpora7:2.121–157. 10.3366/cor.2012.0024
    https://doi.org/10.3366/cor.2012.0024 [Google Scholar]
  4. Devlin, J., M. -W. Chang, K. Lee & K. Toutanova
    2019 BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)ed. byJill Burstein, Christy Doran & Thamar Solorio, 4171–4186. Minneapolis, MN: Association for Computational Linguistics.
    [Google Scholar]
  5. Frermann, L. & M. Lapata
    2016 A Bayesian Model of Diachronic Meaning Change. Transactions of the ACL41:31–45. 10.1162/tacl_a_00081
    https://doi.org/10.1162/tacl_a_00081 [Google Scholar]
  6. Hamilton, W. L., J. Leskovec & D. Jurafsky
    2016 Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)ed. byKatrin Erk & Noah A. Smith, 1489–1501. Berlin: Association for Computational Linguistics. 10.18653/v1/P16‑1141
    https://doi.org/10.18653/v1/P16-1141 [Google Scholar]
  7. Haslam, N.
    2016 Concept Creep: Psychology’s Expanding Concepts of Harm and Pathology. Psychological Inquiry27:1.1–17. 10.1080/1047840X.2016.1082418
    https://doi.org/10.1080/1047840X.2016.1082418 [Google Scholar]
  8. Joulin, A., E. Grave, P. Bojanowski, M. Douze, H. Jégou & T. Mikolov, T.
    2016 Fasttext.zip: Compressing Text Classification Models. arXiv preprint arXiv:1612.03651.
    [Google Scholar]
  9. McGillivray, B. & A. Kilgarriff
    2013 Tools for Historical Corpus Research and a Corpus of Latin. New Methods in Historical Corpus Linguisticsed. byP. Bennett, M. Durrell, S. Scheible & R. J. Whitt, 247–257. Tübingen: Narr.
    [Google Scholar]
  10. Michel, J. -B., Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak & E. L. Aiden
    2011 Quantitative Analysis of Culture Using Millions of Digitized Books. Science331:6014.176–182. 10.1126/science.1199644
    https://doi.org/10.1126/science.1199644 [Google Scholar]
  11. Mikolov, T., I. Sutskever, K. Chen, G. Corrado & J. Dean
    2013 Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems261:3111–3119.
    [Google Scholar]
  12. Turney, P. D. & P. Pantel
    2010 From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research37:1.141–188. 10.1613/jair.2934
    https://doi.org/10.1613/jair.2934 [Google Scholar]
  13. Vatri, A. & B. McGillivray
    2018 The Diorisis Ancient Greek Corpus. Research Data Journal for the Humanities and Social Sciences3:1.55–65. 10.1163/24523666‑01000013
    https://doi.org/10.1163/24523666-01000013 [Google Scholar]
  14. Wiedemann, G., S. Remus, A. Chawla & C. Biemann
    2019 Does BERT Make any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings. InProceedings of KONVENS 2019. Erlangen, Germany, October9–11.
    [Google Scholar]
  15. Yao, Z., Y. Sun, W. Ding, N. Rao & H. Xiong
    2018 Dynamic Word Embeddings for Evolving Semantic Discovery. InProceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 673–681. Marina Del Rey, CA, February5–9. 10.1145/3159652.3159703
    https://doi.org/10.1145/3159652.3159703 [Google Scholar]
/content/journals/10.1075/jhl.22063.bec
Loading
  • Article Type: Book Review
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error